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Finite quasi-quantum groups of diagonal type
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Abstract. In this paper, we give a classification of finite-dimensional radically graded
elementary quasi-Hopf algebras of diagonal type, or equivalently, finite-dimensional coradi-
cally graded pointed Majid algebras of diagonal type. By a Tannaka—Krein type duality, this
determines a big class of pointed finite tensor categories. Some efficient methods of construc-
tion are also given.

1. Introduction

The classification problem of finite quasi-quantum groups is motivated mainly by the
theory of finite tensor categories [15]. Among which, the classification of elementary quasi-
Hopf algebras, or equivalently finite-dimensional pointed Majid algebras, has attracted much
attention in the last one and a half decades. Quite a few examples and classification results of
such algebras, and consequently the associated pointed finite tensor categories, were thus ob-
tained, see e.g. [6,11-13,16]. In these studies, Etingof and Gelaki’s novel idea of constructing
genuine quasi-Hopf algebras from known pointed Hopf algebras plays a key role. This also
builds a substantial connection from pointed finite tensor categories to the beautiful theory of
finite-dimensional pointed Hopf algebras [1, 4], rather than just making the latter a role model
in view of the obvious similarity.

The basic idea of Etingof and Gelaki in [11-13] is to embed a genuine elementary quasi-
Hopf algebras into an elementary quasi-Hopf algebra, possibly up to twist equivalence. The
crux of these constructions is that there is a resolution for any given 3-cocycle on a cyclic group,
namely, for any 3-cocycle o on Z, = (g | g" = 1), the pull-back 7*(c0) along the natural
projection 7 : Z,2 — Zj is a 3-coboundary on Z,>. With this idea, the result of 3-cocycles
on abelian groups of the form 7Z,, x Z; obtained in [25] helps us to go a step forward in
constructing new finite quasi-quantum groups. In our previous work [23], we gave a complete
classification of finite-dimensional coradically graded pointed Majid algebras of rank 2. As a
continuation of [23], the present paper aims to classify diagonal finite quasi-quantum groups
of arbitrary rank.
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202 Huang et al., Finite quasi-quantum groups of diagonal type

In this paper, we generalize the working spirit of [23] to the relatively general situation.
Hence we need to solve four main problems as follows. The first problem, finding a resolu-
tion for any normalized 3-cocycle, lies basically in cohomology of finite abelian groups. By
extending the idea of [25], we are able to give a unified and explicit formula for a complete set
of representatives of normalized 3-cocycles on any finite abelian groups. Moreover, we show
that a 3-cocycle is resolvable by a finite abelian group if and only if it is abelian and we give
an explicit resolution if this is indeed the case. This is also the essential case where diago-
nal Nichols algebras occur for twisted Yetter—Drinfeld categories. For the second problem, to
give a clear description of diagonal Nichols algebras in the twisted Yetter—Drinfeld category
%Zy@q), we transform them to those in the usual Yetter—Drinfeld category g‘y@ by a delicate
manipulation, where G is a finite abelian group with canonical projection 7 : G — ( such that
7*(®) is a 3-coboundary on G. The possibility of such a transformation is guaranteed by the
first step. Then by combining Heckenberger’s classification of arithmetic root systems [20], we
achieve a complete classification of diagonal Nichols algebras with arithmetic root systems in
gyﬂ)q). With the transformation, we can also reduce our third problem of generation into that
of Nichols algebras in the usual Yetter—Drinfeld categories of finite abelian groups. With the
help of Angiono’s result [5], we extend the useful idea in [23] to the general situation and prove
that finite-dimensional pointed Majid algebras of diagonal type are generated by group-likes
and skew-primitive elements. The second and third steps together provide a complete classi-
fication of finite-dimensional graded pointed Majid algebras of diagonal type in a conceptual
way. Finally, we shall need to turn the conceptual classification into an operable construction,
our fourth problem. For any given finite abelian group with fixed 3-cocycle and a compati-
ble arithmetic root system, the construction is essentially a computational problem of linear
congruence equations. We find two efficient ways, for most cases, to generate series of new
genuine finite-dimensional pointed Majid algebras.

Here is the layout of the paper. Section 2 is devoted to some preliminary materials. In
Section 3, we provide an explicit formula for normalized 3-cocycles on finite abelian groups
and give resolutions of the abelian ones via finite abelian groups. In Section 4, we give a
complete classification of diagonal Nichols algebras with arithmetic root system in the twisted
Yetter—Drinfeld category gyi)q> with ® nontrivial. Then, in Section 5, we classify in a concep-
tual way all the connected finite-dimensional graded pointed Majid algebras of diagonal type.
Finally, in Section 6, we provide some methods to construct new genuine finite-dimensional
pointed Majid algebras.

Throughout the paper, k is an algebraically closed field with characteristic zero and all
linear spaces are over k. A left (resp. bi-) G-comodule M, by definition, is a G-graded (resp.
bigraded) space M = @geG EM (resp. M = @g,heG EM™). In general, we only deal with
homogeneous elements unless stated otherwise. For convenience, if X € &M (resp. X € &M hy
then we use its lowercase x to denote its degree, thatis x = g (resp. x = gh~!). In accordance
with our previous works [21-24], we only work on pointed Majid algebras. By taking linear
dual, one has the version for elementary quasi-Hopf algebras.
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2. Preliminaries

In this section, we recall some preliminary concepts, notations and facts. Clearly, there
are some inevitable overlaps with the counterpart of [23]. For the completeness and for the
convenience of the reader, we recall some materials presented already in [23].

2.1. Majid algebras. By definition, Majid algebras are exactly the dual of Drinfeld’s
quasi-Hopf algebras [9], and can be given as follows.

Definition 2.1. A Majid algebra is a coalgebra (M, A, ¢) equipped with a compatible
quasi-algebra structure and a quasi-antipode. Namely, there exist two coalgebra homomor-
phisms

M- MM-—->M, a®b+— ab,
w:k — M, A= Al

a convolution-invertible map ® : M®3 — k called associator, a coalgebra antimorphism
8 :M — M and two functionals «, 8 : M — k such that for all a,b,c,d € M the follow-
ing equalities hold:

ai(bic1)®(az, bz, c2) = ®(ar, by, c1)(azbz)ca,

lya = a = alyy,

®(ay, by, c1d1)P(azba, c2,dz) = ®(by,c1,d1)P(ay, baca, d2)P(az, b, c3),
D(a, 1y, b) = e(a)e(D).

S(ay)a(az)as = a(a)ln, a1f(az)8(az) = B(a)lw,

®(ay. 8(az).as)Blaz)a(as) = ' (8(a1). a3, 8(as))a(a2)B(as) = £(a).

Throughout we use the Sweedler sigma notation A(a) = a; ® a, for the coproduct and
ay ®a ® -+ ® au+ for the result of the n-iterated application of A on a.

Example 2.2. Let G be a group and ® a normalized 3-cocycle on G. It is well known
that the group algebra kG is a Hopf algebra with A(g) = g ® g, 8(g) = g ' and e(g) = 1
for any g € G. By extending ® trilinearly, ® : (kG)®3 — k becomes a convolution-invertible
map. Define two linear functions o, 8 : kG — k just by

]
O(g.g7g)

for any g € G. Then kG together with these ®, o and  becomes a Majid algebra. In the
following, this resulting Majid algebra is denoted by (kG, ®).

a(g) :=¢(g), Pg) =

Recall that a Majid algebra M is said to be pointed if the underlying coalgebra is so.
Given a pointed Majid algebra (M, A, e, M, u, @, 8, «, B), let {M,, },>¢ be its coradical filtra-
tion, and

grM = Mo & Mi/Mo & Mz/M; & -
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the corresponding coradically graded coalgebra. Then naturally gr M inherits from IM a graded
Majid algebra structure. The corresponding graded associator gr ® satisfies gr ®(a, b, c)=0
for all homogeneous a, b, e gr M unless they all lie in IMg. A similar condition holds for
gra and gr B. In particular, My is a Majid subalgebra and it turns out to be the Majid algebra
(kG, gr @) for G = G(M), the set of group-like elements of M. We call a pointed Majid
algebra M graded if M = gr M as Majid algebras. We refer to [21] for more details on pointed
Majid algebras.

Definition 2.3. Let (M, A,e,M, u, d, 8, «, f) be a Majid algebra. A convolution-
invertible linear map
J MM —k

is called a twisting (or gauge transformation) on M if
J(h,1) =e(h)y = J(1,h)

for all h € M.

Given a Majid algebra M and a twisting J, one can construct a new Majid algebra M’
as follows: M/ = M as a coalgebra and the multiplication o on M is given by

aob = J(ay,by)azbyJ a3z, b3)
for all a, b € M. The associator @/ and the quasi-antipode (87, a”, B7) are given as

@7 (a,b,c) = J(b1,c1)J (a1, brc2)®(az, b3, c3)J " (azba,ca)J " (aa. bs),
87 =38, o/(a) =T (S(@1).az)a(ar). B’ (a) = J(a1.8(a3))B(az)
foralla,b,c € M.

Definition 2.4. Two Majid algebras IM; and M, are called twist equivalent if there is
a twisting J on IM; such that IMIJ ~ M, as Majid algebras. Denote M ~ M5 if M is twist
equivalent to IM,. We call a Majid algebra M genuine if it is not twist equivalent to a Hopf
algebra.

2.2. Yetter-Drinfeld modules over (kG, ®). The definition of a Yetter—Drinfeld mod-
ule over an arbitrary Majid algebra was already given in [7, Definition 3.1] and we recall it as
follows.

Definition 2.5. Let IM be a Majid algebra with associator . A left-left Yetter—Drinfeld
module over M is a triple (V, py, ) such that

e (V, py) is aleft comodule of M and we denote py (v) by v—1 ® vg as usual;
e >: M ®V — V is aKk-linear map such that for all 41,/ € Mand v € V,

®(h2, (I2 > vo)-1.13)
hl >V = h > l .- ’
D q’(h1,11,v_1)<I>((h3>(12>vo)0)_1,h4’14)( 3> (I2>v0)0)o
IM >V =0,

(h1>v)—1hy ® (h1 > v)o = h1v—1 ® (h2 > vp).
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For our purpose, we want to describe a Yetter—Drinfeld module over Majid algebras of the
form (kG, @) with G a group. Assume that V' is a left k G-comodule with comodule structure
map 6z, : V — kG ® V. Define

8V i={veV|8(v) =g®v}

and thus

V:@gv.

geG

Here we call g the degree of the elements in V' and denote degv = g forv € V.

Definition 2.6. The left kG-comodule (V, 8y ) is a left-left Yetter—Drinfeld module over
the Majid algebra M = (kG, @) if there is a linear map > : G ® V — V such that for all
e,f €eGandv €&V

D(e. f.g)Plefgf e e, f)
Ple. fgf 1 )

ev (f o) = (ef) > v,

Im>v =,

2.1) evvecEy.

The category of all left-left Yetter—Drinfeld modules over (kG, ®) is denoted by gZ/i)CD.
Similarly, one can define left-right, right-left and right-right Yetter—Drinfeld modules over
(kG, ®). As the familiar Hopf case, g?/i)q) is a braided tensor category. More precisely,
forany M, N € gyi)q>, the structure maps of M ® N as a left-left Yetter—Drinfeld module
are given by

Sp(mg @np) :=gh @mg @ nyp,
®(x5g9h)q)(xgx_lath_l’x)
d(xgx—1 x,h)

x> (mg @ny) = X>mg ®X>ny

forall x,g,h € G and mg € EM, ny, € hN . The associativity constraint @ and the braiding ¢
of gy@q) are given respectively by

a(tte ® vp) ® Wwe) = Ble. £8) e ® (v ® we).
c(ue ®Vr) =e>vr QuUe

foralle, f.g € G,u, € °U, vy € fV,wg ce8Wand U, V,W € gZyJDq’.
If moreover G is an abelian group, then we can simplify the above definition further. For
this, define
®(g.e, f)Ple. f.8)
®e.g. f)

D, :GxG—>k* (e f)
where g € G. Direct computation shows that

O, € 72(G.k*).
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Definition 2.7. Assume that G is an abelian group. A left kG-comodule V is a left-left
Yetter—Drinfeld module over (kG, ®) if each 8V is a projective G-representation with respect
to the 2-cocycle @, namely the G-action > on & V' satisfies

e>(f>v)=5g(e,f)(ef)>v foralle, f € G, v e V.

Remark 2.8. For an arbitrary group G (may be not abelian), we say that a left-left
Yetter—Drinfeld module V over (kG, @) is of diagonal type if every 8V is a projective G-
representation and it is a direct sum of one-dimensional projective representations. In this
case, the union of a nonzero element of each one-dimensional projective representation forms
a basis of V, which is called a canonical basis of V in this paper. By equation (2.1), £V being
a projective representation will imply that g lies in the center of G. Therefore, if V' is diagonal
then its support group, that is the subgroup generated by {g | &V # 0}, must lie in the center
of G and thus is an abelian group. We point out that not like the Hopf case, here even the whole
G being abelian can not guarantee that every V' is diagonal. It turns out that all V' € g?/i)q)
are diagonal if and only if ® is an abelian cocycle, see [28,29], which is different from the
Eilenberg—MacLane abelian cocycle [10]. We will discuss these cocycles in detail in Section 3.

2.3. Bosonization for pointed Majid algebras. The theory of bosonization in a broader
context can be found in [27] in terms of braided diagrams. For our purpose, it is enough to fo-
cus on the situation of graded pointed Majid algebras. For the sake of completeness and later
applications, we record in the following some explicit concepts, notations and results without
proof.

In the rest of the paper, we always assume that

M =P M,
ieN

is a coradically graded connected pointed Majid algebra with unit 1. So My = (kG, @) for
some group G together with a 3-cocycle ® on G. Let 7 : M — Mg be the canonical projec-
tion. Then M is a kG-bicomodule naturally via

81 = (r @id)A, 8g = (id® 1)A.

Thus there is a G-bigrading on IM, that is,

M = @ gEM”,

g,heG

where
EM" = {m e M| 6.(m) = g@m, Sg(m) =m @ h}.

As stated in the last paragraph of the introduction, we only deal with homogeneous el-
ements with respect to this G-bigrading in this subsection. For example, whenever we write
A(X) = X1 ® X, all X, X1, X, are assumed homogeneous, and for any capital X € gﬂ\/[h,
we use its lowercase x to denote gh~!.

Define the coinvariant subalgebra of IM by

R:={meM|(id®n)A(m) =m® 1}.
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Clearly 1 € R. There is a (kG, ®)-action on R via
O(fg. 7)) -
(X))

O(f NS
forall f,g € G and X € &R. Here - is the multiplication in M. Then (IR, 6z, I>) is a left-left

Yetter—Drinfeld module over (kG, ®).
Moreover, there are several natural operations on R inherited from M as follows:

M:R®R >R, (X,Y)r> XY :=X.Y,

frX: =

u:k—R, A= Al
AR - R—->R®R, Xl—>CD(x1,x2,x2_1)X1-x2_1®X2,
ERZR—>k, ER 3=8|IR,
1
Sr: R — R, X —x - 8(X).
R - HCD(x,x‘l,x)x @)

Then it is routine to verify that (R, M, u, AR, ¢r, Sr) is a Hopf algebra in 8Zy§Dq>.
Conversely, let H be a Hopf algebra in gyi)q). Since H is a left G-comodule, there is a

G-grading on H:
H="H,
xeG

where *H = {X € H | 6.(X) = x ® X}. As before, we only need to deal with G-homoge-
neous elements. As a convention, homogeneous elements in H are denoted by capital letters,
say X,Y, Z, ..., and the associated degrees are denoted by their lower cases, say x, y,z,....

For our purpose, we also assume that H is N-graded with Hy = k. If X € H,, then we
say that X has length n. Moreover, we assume that both gradings are compatible in the sense

that
H = @gH = @@gH,,.

geG g€G neN
For example, the Hopf algebra R in gy®¢ considered above satisfies these assumptions as
R = P,y Ri is coradically graded. In this case, we call dimR; the rank of R and M. For
any X € H, we write its comultiplication as

Ag(X) = X(l) &® X(z).

Lemma 2.9. Keep the assumptions on H as above. Define on H @ KG a product by

D(xg,y.h)P(x,y,8)

X®Y ®h) = d(x, g, y)P(xy, g, h)

X(grY)® gh.
and a coproduct by

AX ® g) = (x(1), ¥2). &) ' (X(1) ® X2)2) ® (X(2) ® ).

Then H ® KG becomes a graded Majid algebra with a quasi-antipode (8, o, B) given by
gl g.87h)
d(x1gl xg. g7 HP(x, 8.871)

a(l®g) =1, a(X®g) =0,
Bleg) =2(.e e, BX®g =0,

where g, h € G and X, Y are homogeneous elements of length > 1.

S(X®g) = (1ox g HBu(X)®1),
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In the following, by H#kG we denote the resulting Majid algebra defined on H ® kG.

Proposition 2.10. Let M and R be as before, and let R#kG be the Majid algebra as
defined in the previous proposition. Then the map

F:R#kG - M, X Rgr Xg

is an isomorphism of Majid algebras.

2.4. Nichols algebras in gi‘/ﬂ)q’. Nichols algebras can be defined by various equiva-
lent ways, see for example [3]. Here we adopt the defining method in terms of the universal
property. Roughly, Nichols algebras are the analogue of the usual symmetric algebras in more
general braided tensor categories.

Let V' be a nonzero object in g’yﬂ)q). By T (V') we denote the tensor algebra in 827/{[)4)
generated freely by V. It is clear that Tg()/) is isomorphic to €D, -, V'®" as a linear space,
where ) -

VO = (- (VRV)®V)---® V).
——
n—1
This induces a natural N-graded structure on 7 (V). Define a comultiplication on T (V') by
AX)=XQ®1+1® X for all X €V, a counit by ¢(X) =0, and an antipode by
S(X) = —X. These provide a graded Hopf algebra structure on T (V) in the braided ten-
sor category gi%‘l)q).

Definition 2.11. The Nichols algebra B(V') of V is defined to be the quotient Hopf
algebra Te(V) /I in 8Zyi)q’, where [ is the unique maximal graded Hopf ideal generated by
homogeneous elements of degree greater than or equal to 2. Moreover, we call a Nichols
algebra B(V') diagonal if V is a diagonal Yetter—Drinfeld module in giyi)(b.

To stress that our Nichols algebras may be non-associative in some occasions, we will
call an associative Nichols algebra, e.g. B(V) € giyfl), a usual Nichols algebra. The twist-
ing process for Majid algebras can be transferred to Nichols algebras directly. In fact, let
(V,>,61) € gi’/i)q), and let J be a 2-cochain of G. Then we can define a new action > 7 of G
over V' by
_J(g.x)
=—g0

J(x,8)

for X € V and g € G. We denote (V,1>7,87) by V7 and by definition we have

v’ e Gyp®ol),

gry X

Moreover, there is a tensor equivalence (Fy, ¢, ¢2) : 8Zy£¢ — gyj)cp*au) which takes V/
to V7 and

UV :UeV) U V!, Y®ZJ0.2) Yoz

forY eU,ZeV.
Let B(V') be a usual Nichols algebra in gi%‘D. It is clear that B(V)” is a Hopf algebra
in giyi)aj with multiplication o determined by

XoY =J(x,y)XY
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for all homogeneous elements X,Y € B(V), here x = deg X, y = degY. Using the same
terminology as for Majid algebras or quasi-Hopf algebras, we say that B(V) and B(V)” are
twist equivalent. The following result is obvious, but important for our exposition.

Lemma 2.12. The twisting B(V)’ of B(V) is a Nichols algebra in gy@aJ and
BWV) = BWV).

2.5. Arithmetic root systems and generalized Dynkin diagrams. Arithmetic root
systems are invariants of Nichols algebras of diagonal type with certain finiteness property.
A complete classification of arithmetic root systems was given by Heckenberger [20]. This is
a crucial ingredient for the classification program of finite-dimensional pointed Hopf algebras,
and turns out to be equally important in the broader situation of pointed Majid algebras.

Suppose B (V') is a usual Nichols algebra of diagonal type in gyJD. Let{X; |1 <i <n}
be a canonical basis of V with 87 (X;) = h; ® X;. The structure constants of B(V') are
{gij | 1 <i,j <n}suchthath; > X; =¢q;; X;. Let E = {e; | | <i < n}beacanonical basis
of Z", and y a bicharacter of Z" determined by y(e;,e;) = ¢q;;. As defined in [17, Section 3],
AT (B(V)) is the set of degrees of the (restricted) Poincaré—Birkhoff-Witt generators counted
with multiplicities, and

ABV)) = AT(BIV) U-AT(BT)).

which is called the root system of B (V). Moreover, the triple (A = A(B(V)), x, E) is called
an arithmetic root system of B(V) if the corresponding Weyl groupoid W), g is full and finite,
see [19, Sections 2 and 3]. In this case, we denote this arithmetic root system by A(B(V)).E
for brevity. If there is another arithmetic root system /\ y,E’» and an isomorphism 7 : 7 — 7"
such that

(E)=E', )(t(e).1(e)) = x(e.e),
X' (t(e1). t(e2)) X' (z(e2). T(e1)) = x(e1,e2)x(e2, 1),

then we say that /\ y,E and A y,E’ are twist equivalent.
A generalized Dynkin diagram is an invariant of arithmetic root systems, and it can de-
termine arithmetic root systems up to twist equivalence.

Definition 2.13. The generalized Dynkin diagram of an arithmetic root system /\ y.E 18
a non-directed graph £, g with the following properties:

(1) There is a bijective map ¢ from I = {1,2,...,n} to the set of vertices of D, .
(2) Forall 1 <i <n, the vertex ¢ (i) is labelled by ¢;;.
(3) For all 1 <i,j < n, the number n;; of edges between ¢ (i) and ¢ () is either O or 1.

If i = j or gijq;i =1 then n;; = 0, otherwise n;; = 1 and the edge is labelled by
qi; = qijqji forl <i < j <n.

An arithmetic root system is called connected provided the corresponding generalized
Dynkin diagram D, g is connected. All the connected arithmetic root systems are classified
and the corresponding generalized Dynkin diagrams are listed in [18,20].
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3. Normalized 3-cocycles over finite abelian groups

The aim of this section is threefold: Firstly, we will give a unified formula for 3-cocycles
over a finite abelian group. Secondly, we want to develop a method to determine when a 3-
cocycle is a coboundary. At last, we want to discuss the “resolution” problem, i.e., for every
3-cocycle ® on Zyy,, X -+ X Zp,,, is there a bigger abelian group G together with a group
epimorphism v : G — Zp,, X - -+ X Zm,, such that the pull-back 7 *(®) is a coboundary on G?
By this discussion, we find that there are essential differences between different 3-cocycles and
we get the definition of abelian cocycles again, which was already discussed by Ng [29] and
Mason-Ng [28].

3.1. A unified formula for 3-cocycles. Let G be a group and (B., 0e) its bar resolution.
By applying Homyg (—, k™), we get a complex (BJ,0]), where k* = k \ {0} is a trivial G-
module.

Now let G be a finite abelian group. Thus G == Z,, X -+« X Zp, . For every Z,, , we fix
a generator g; throughout this paper for 1 < i < k. It is known, see e.g. [30, Section 6.2], that
the following periodic sequence is a projective resolution for the trivial Z,;-module Z:

T; N; T; i
3.1 oo = Llimy —> Lo, —> Llom; —> Lillm, N Z — 0,

where 7; = g; — 1, N; = Z;";gl gl.j and ¢; is the augmentation map.

We want to form the tensor product of these periodic resolutions and get a resolution for
the group G = Zp, X -+ X Zpm, . For the reader’s convenience, we take the case k = 2 as an
example to explain our construction at first and then provide the general form. In order to keep
consistency with the notations used in [30, (2.7.1)], we rewrite the sequences (3.1) fori = 1,2

in the following forms:

T, Ny Ty €1

---—>P3 P2 P] Po——>Z—>O,
T: N T:

_>Q3 2 Q2 2 Ql - Q0—>82 7 — 0.

We use Po — 7Z — 0 and Q¢ — 7Z — 0 to denote them for short. Now we consider the tensor
product over Z and for any nonnegative integers i, j we have

P; ®7 Q] = ZZml Q7 ZZmz = Z(Zml X Zmz) =7G

which is a free ZG-module of rank one. In order to remember the positions of P; ®z Q; in
the double complex Dee := Po ®7 Qe, we denote this free ZG-module by (ZG)WV(, j), i.e.,

(3.2) P ®z Q; = (ZG)V(i, j).

Next we form the total complex Tot(Dee) of Pe ®7 Qe and want to give its differentials d
clearly. By definition, we know that the horizontal differential of P; ®7 Q; is just d Il
where d ! is the differential of P, and the vertical differential is (—1)'1 ® d? where d? is the
differential of Q.. Therefore,

d(P; ®z Q) = d'(P;) ®z Qj + (—1)' P; ®2,d*(Q)).
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Using the convention of (3.2), we can describe the differential more explicitly. To this aim,
define two morphisms d1, d, of ZG-modules through

0 ifi =0,
di(VW(@,j)) = 4N1VY(G@ —1,j) if0#i even,
Ti\W(i —1,j) ifiodd,

0 if j =0,
d2(V(i, ) = (1) NaW(i,j —1) if0 # j even,
(=) T,W(,j —1) if j odd.

It is not hard to see that d = dy + d». In one word, the total complex Tot(Dee) can be de-
scribed as follows:

Tot(Dee)n = P (ZG)V(.j). d =di+dy.
i+j=n

In general, let Ko be the following complex of projective (in fact, free) ZG-modules.
For each sequence a1, . .., aj of nonnegative integers, let W(ay, ..., ay) be a free generator in
degree aj + -+ + ag. Define

Ky := @ (ZG)¥(ay, ..., az),

ai ++ak =m

and

0 ifa; =0,
di(W(ay,...,ar)) = 3 (~D)Xi<i U N;W(ay,....a; —1,...,ar) if0 # a; even,
(—=DXi<i 4Ty W(ay,...,ai —1,...,a) ifa; odd,

for 1 <i < k. The differential d is defined to be d1 + - - - + dj. Now we can form a complex
(3.3) Ke 5> 7 — 0,

where ¢ denotes the augmentation map.
Lemma 3.1. The complex (3.3) is a free resolution of the trivial ZG-module Z.

Proof. Due to our construction, (K, d) is exactly the tensor product of the complexes
(3.1). Therefore by the Kiinneth formula for complexes [30, (3.6.3)] we know that K, is exact.
Thus the only task is to show that Kere = Imd |k, , but this is clear. |

For convenience, we fix the following notations.

For any 1 <r <k, define ¥, := ¥(0,...,1,...,0) where 1 lies in the r-th position.
Forany 1 <r <s <k, define ¥, s := W(0,...,1,....1,...,0) where 1 lies in both the r-th
and the s-th position if r < s and ¥, , := W(0,...,2,...,0) where 2 lies in the r-th position.
Similarly, one can define W, ;;, Wy 55, Vs and W, ., for 1 <r <k, 1 <r <s <k and
I<r<s<t<k.
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212 Huang et al., Finite quasi-quantum groups of diagonal type

One could even define \Ili,j,s,t, qji,i,j,s, \Iji,j,s,s’ \Di"/"j’s, \Iji,i,j,j’ \Iji,i,i,js \Iji,j,j,j’ and
Viiifor1<i<k, 1<i<j<k, 1<i<j<s<kandl<i<j<s<t<=<k, re-
spectively. Now it is clear that any cochain f € Homyg (K3, k™) is uniquely determined by
its valueson W, 5 1, Wy 55, Wy psand Wy, for1 <r <k,1 <r<s<kandl1<r <s<t <k.
For such numbers, we let

fr,s,t = f(‘ljr,s,t), fr,s,s = f(\pr,s,s)7 fr,r,s = f(\pr,r,s)» fr,r,r = f("Ijr,r,r)-

Lemma 3.2. The 3-cochain f € Homyg(K3,k*) is a cocycle if and only if for all
I<r<kl1<r<s<kandl <r<s<t <k,

my __ — my  __
(3.4) r,r,rr_1’ frss rrs_l’ r,sft_ rst frst_

Proof. The proof follows by direct computations. By definition, the cochain f is a
3-cocycle if and only if 1 = d*(f)(V; js) = f(d(V; jss)) foralll <i <j <s <t <k.
For any a € k*, itis clear that 7; - a = 1 since k* is considered as a trivial G-module. There-
fore we only need to consider the condition 1 = d*(f)(¥; ;) inthecases: i = j =5 =1,
i=j<s<tii<j=s<ti<j<s=tandi =j <s =t,respectively.

Incasei = j = s =t, we have

L=d*(/)(Wiiii) = f(NiViii) = Ni - fiii = fi75.
Similarly, we have the following:
flst—l ifi =j <s<t,
i =1 ifi<j=s<u,
f”s—l ifi<j<s=t,
S =1 ifi=j<s=t
Now it is easy to see that these relations are the same as in equation (3.4). m)

Lemma 3.3. The 3-cochain f € Homyg(K3,k*) is a coboundary if and only if for all
1 <i < j <k, thereare g; ; € k* such that

(3.5) fiig =&, fipi=g, ad fiii=1, frsi=1,
forl1 <l <kandl <r<s<t<k.
Proof. By definition, f is a coboundary if and only if /' = d*(g) for some 2-cochain
g € Homyg (K2, k*). Forany 1 <i < j <k, let g; ; := g(V¥; ;). Since T; -a = 1 for any
a € k*, we have d*(g)(Wr5:) =d*(g)(Wy ) =1for 1 <r<s<t<kand1=<I[<k.
Now forall 1 <i < j <k,
fiij = d* (@) (Vi) = g(NiWi ; + T; W) = g 7.
figj = d (@)Y ) = gV ; — N ;) =g, 7" D

For a set of natural numbers s, ..., s;, by (s1,...,5;) we denote their greatest common
divisor.
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Proposition 3.4. One has

n

n n
H3(G’k*) = 1_[ Lim; X 1_[ Z(miamj) x l_[ Z(mismjsmk)’

i=1 1<i<j<n 1<i<j<k<n

Proof. By Lemma 3.2 and Lemma 3.3, for a 3-cocycle f one can assume that f7;;
is an m;-th root of unity and f; ; x is an (m;, m;, my)-th root of unity for all 1 </ < n and
1 <i < j <k <n.ByLemma 3.3, one can take

—1/m;
gl’J = ‘](lajvj ’
m; . . i m;
and thus can assume that f; ; ; = 1 and gi,J’. =1foralll <i <j <n.By fl”Jljf”’J =1,

mj
iisj

one has = 1. Therefore, H3(G, k*) must be a quotient group of

n

n n
HZml.x ]_[ Tom,; X ]_[ Zooms i)

i=1 1<i<j<n 1<i<j<k<n

Using the second relation in (3.5), one may even assume that fl”; ij = 1. So the proposition is
proved. |

For any natural number m, once and for all we fix {, to be a primitive m-th root of unity.
Corollary 3.5. The set

aij; -
{f € Homyg (K3, K*) | frag =8nl)s fiig =Sm) o Jigg =1 frsa =S momn)
forl <l <n, 1<i<j<n 1<r<s<t<n, and

0<a; <my, 0=<ajj <(mijmj), 0=<dary < (my, ms,m;)}

is a complete set of representatives of 3-cocycles of the complex (K}, dJ).

Next, we want to construct a chain map. We need some more notations to present the
chain map. For any positive integers s and 7, let [{] denote the integer part of § and let s;
denote the remainder of division of s by . When there is no risk of confusion, we drop the
subscript and write simply s’. The following observation is useful in later arguments.

Lemma 3.6. For any three natural numbers s, t,r, one has

EOEELE)

Proof.  'We calculate

[s—i—t;] [s—l—t—[%]r] [s—l—t] [I]
= = — =1 i
r r r r

Now we are ready to give a chain map, up to the third term for our purpose, from the
normalized bar resolution (Be, 0e) to the tensor resolution (Ke, de). Recall that By, is the free
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214 Huang et al., Finite quasi-quantum groups of diagonal type

7Z.G-module on the set of all symbols [A1, ..., ;] with h; € G and m > 1. In case m = 0, the
symbol [ ] denotes 1 € ZG and the map dp = € : Bo — Z sends [ ] to 1.
We define the following three morphisms of ZG-modules:

ig—1
Fy:By—> Ky, [g)' - gi] '—>Z D g gl g,
s=1oa3=0
F>: By — K>,
‘ . , + s—1+js—1[ls T J
gy - gir gl gé]Hzg" g™ ‘[sm s]\lfs,s
N
Js—1 ir—1 )
Z Z Zglll' g;t llgl : gslsllggsgft\ps,t,
1<s<t<nay;=08,=0
F3 B3—>K3,
g} - gin gl - gin. gk gkn)
n . ir—1
Jr + ke itk r 1k ] .
HZ[—rm r]g{I Loglr TRt N el g B,
r=1 g lsr=0
. lt 1
Jr+ ke jitk stk
n Z [ r r]g{1 1. j 1 1 Zg gt 1gftlpr,r,t
1<r<t<n r B:=0
ir+ ol
e+t i+ + k ky
+ Z [ - ]glll J1 g;’ 11 Ji—1 Zgll' W oa 11gr oy
1<r<t<n t yr=0
l[ 1 ]5_1 kr—l
s s ki1 kr
D DD D IR Sy 1l S LR il S LY i il s (o
L<r<s<t<n ;=0 o5 =0 yr=0

for0 <ij, jj,k;j <mjand 1 <[ <n.

Proposition 3.7. The following diagram is commutative:

03 02 01

B; By B Bo 7 0
EO T
Ki—4 Kk, 45K —4 K 7 0.

Proof. The proof is by direct but very complicated computation. The essence of the
proposition lies in figuring out the morphisms Fp, F» and F3 in the first place. We hope that
the proof may shed some light on the construction of them. The proof is naturally divided into

three parts.
Claim 1: dFy = 01. Take any generator [g;1 ---g,i,”] € Bj. Then

ar([gh gl = (g -+ gl — HW(0,...,0)
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Huang et al., Finite quasi-quantum groups of diagonal type 215

and
. . n is—1 .
ahlel ) = (3 Y el e, )
s=1a3=0
n is—1 ) .
=D g g g (g — DY, ..., 0)
s=1oay=0

n
=3 gl gl (gl — DW(.....0)
s=1
= (g -~ glr — 1)W(0,...,0).
Claim 2: dF, = F1d;. For any generator [g!! --- g, g]' -+ g}"], we have

F1o2([g) -+~ gln, gl -+ gir])
] .n i .ﬂ ) + .ﬂ .n i .ﬂ
= Fi(gy - girlgl" gl —1lg) ™ gt + gy -+ i)
=g g Y D8l g e s

s=1oa3=0
n (is+js)/_1

i1+/1 is—1t+Jjs—1 a
_Z Z 81 "'ng—I g W
s=1

ag=0
n is—1
i is—1 0
+ Z Z g1 85185 s
s=1a3=0

Fix any s, the coefficient of Wy is

Js—1
(36) glll cee giln Z g{I . ggg_—llg;xs

as=0

SRl is+ J
it e .
_glll J1___g;_11 J 1( 2: gﬁ‘ _[s S]NS)

m
as=0 §
is—1
i1 ls—1 0
+ ) g e e

as=0

Now consider d F>. We have
dFy([g) -+~ glr . g{' - gim])
=d ( Z gl11+11 ___g;s:ll"l‘Js—l [Sm_h]\pss)
s=1 s

Js—1 i;—1
_d( > 2 Zglf"'gi’—‘fg{'-'-gii‘l‘gé"sgf’\lfs,r)'

1<s<t<nay=08,=0
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216 Huang et al., Finite quasi-quantum groups of diagonal type

In this expression, the coefficient of Wy is
i1+J 1+ Jjs— Is + Js
gt géll j 1[ ]Ns
mg
is—1 _
YD el gl gl el - Db
1<t<s B;=0
Js—1

+ Z Zglll &gl gl e (g — 1)

s<t=<n oy=0

— gil+j1 g;s 11+Js 1[15 +JS]NS
Mg
is—1
- > g (e g - el
Bs=0
Js—1 )
+ ) (gl — gl glg]t gl g
ay=0
_ gil+j1 g;v 11+]€ 1[ls +JS]NS
mg
is+js_1
Z g§1+j1 g;s_l‘i‘Js lgss
Bs=0
Js—1 is—1
4 Z g . an J | ggs llgs 4 Z g g;s llgggA’
as=0 Bs=0

which is clearly identical with (3.6). So we have d F» = F10,.

Claim 3: dF3 = F03. Similarly, for any generator [gil ---g,i{’,g{‘ ---g,];”,g]f' ---g,lg’l],
we have
: A -
F05([g} ~--g,’1",g{‘ -~g£”,g11 cogh])
n .l’l k n n k kl’l
= Fa(g) - gnlel g gy gl — g gyt gn)
n +k }’l n n .Yl
+ Fa([g) gl g T g o ] ley g gl gil)

' ; +k s—1+ks_1 [ Js T ks
e Sl g o [,
S

[ it+j1

ks—1 ji—

. e
—gl g Y ZZg gl e g g el g,

1<s<t<n ay=0 ;=0

n
1+ 1+ c1+iso1+ks_1 [ s + Js) + ks
_Zglll+]1+ 1, g; 11+J 1+ 1[ s s ]\I’s,s
s=1 M

ks—1 (ir+j)' =1
k
+ Z Z Z glllﬂl' g;t 11+]t gy gs 185 g?’\Ifs,;

1<s<t<nagy=0 B;=0
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4 Xn:gil'i‘jl i, gl i1tk [is + Us + k)

_ W s
s—1 my ] 5

s=1

Ustks)' =1 i1 i "
) + s—1+Ks—
PR DU W I i ¥ SRR Pt i O

1<s<t<n as=0 B:=0
n . .
i1+J is—14 Is + Js
_ Zgll J1 gss_l Js— 1[ \ps,s
Mg

-1 lt—l

+ Z Z Z g g:t 1lg1 : gﬁsllgs gftlps,t-

1<s<t<nasy=08,=0

Note that in (ig + ) we drop the subscript m. In the previous expression, forany 1 < s < n,
the coefficient of Wy ¢ is

. . Lk
(37) glll ._,g’l/lngfl"f'kl ,,_ggifll"f'ksfl I:JSI:Z_ S]
S
+ gtk stk ([is; js] B [js’: ksD
s K}

_ St is—1+js—1 [ Ls T Js
&1 851 — |
Mg

where Lemma 3.6 is applied. For any 1 < s < ¢ < n, the coefficient of Wy ; is

ks—1 ji—1
(38) —gi gl Y Y gl g el gy g gl
as=0 ;=0
kg—1 ir+jr—1 ; —|—J
k ks as t t
4 Z gz1+/1_ g;’ 11+Jz 1g11.”gs_11g? ( Z gfz_[ - ]Nt)
as=0 ﬂt=0 !
lt_ k k JY+kS‘ ] +k
+ s—1+ks—
D DN T b Al SCARY vt ‘( Z g —[S ]Ns)
/3[—0 as=0 Ms
—1 l[—
+ Z S gl giiglt gl g gl
as=08,=0
For d F3, we have
. . . -
dFs(gy gy el - gn gy - gr")
n . ir—1
Jr+kr itk ro1 ke ] .
:d(Z[%]g{l 1. gi o] I Z gl glr “lgbru,,,
r=1 r Br=0
. lt—
Jrt ke itk r—1ky—
v X [l g e Y gl e
I<r<t<n r B:=0
It + Jt] iv+i ir—1+ji— 1kr_1 k1 kr—1 ,yr
D e e e A D DY AR ey e e
1<r<t<n ! Yr=0
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i[—l /S‘_l
—d( S Y el g el > gt gl

1<r<s<t=<n ;=0 ay=0
kr—1
ki kyr—1
X Z &1 ”'gril g;}frqu,s,t .
Yr=

Note that the coefficient of Wy g is

Js ks ji+k o1 Aks—1 i i1 ¢ i
[¥]g{1 ogh Tglt . gl (gls — 1)

X
Js T ks ji+k o1 +hs_1 i i~ (i
+ ) ¥]g{1 oglmitherghi L glt ol )
s<t<n Ms
Is +Js i1+j i1+ js—1 k kr—1, ky
n Z [sm s]glll jl_“g;_ll J lgll"'gr—ll(gr —1)
1<r<s S

Js T ks ji+k 1tk i o1y i
:[M]g{l 1...g§_11 lglllg;_ll(g; _1)

Mg
j +k i1+k s—1+ks— ) in [ s
[ ERgh glgt gl gl — gllg)
N
i +] i1+ -s—+.s— k kS—
+|:Sm s]gll] Jl"'g;_ll J l(gll”'gs—ll_l)’
N

which clearly is equal to (3.7).
Finally, we consider the coefficient of W ; for 1 <s <t < n, which is

ir—1

Js +k 1+ fo—1+ks ' iy
[ sm S]ng{1 1__.g§_11 1 Zglll___g;t_llgtﬂt
s B:=0
i+ ol
t + i i1+ 1+ k ke 1 ys
+[ ]thlll ]ln_g;t_ll Ji—1 Zgll"'gs—llg;/
e Ys=0
ir—1 Js—1
] i — A 'S— s k kr— r
— > > g gitgl > gl gl g e g gk — 1)
1<r<s<t B;=0 as=0
it—l ks_l
. - . s X -
+ Y D g el el g @ — ) Y g gy el
s<r<t ,=0 ys=0
Ji—1 ks—1
' ir—1( gir / 1— k ks—1 ,vs
— > gl gy @ =) Y et gl et D g gy gk
s<t<r a;=0 Ys=0
. ir—1
Js Tk 1+k s 1+hs— ' f
= [%]ng{‘ Lo gh R S gl gl g
s B:=0
i+ ol
t i i+ 1+ k ko1 ys
+[ - ]thlll jln_g;z_ll Ji—1 Zgll"'gs;llgé]‘/
t
Ys=0
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ir—1 Js—1
—_— . ek
- Z gy "'g;t—llgft Z g7’ "'gg—llg(sx (g1 g3 =1
B:=0 ay=0
i;—1 kg—1
' iy ; i ; . k Ks—1 s
+ 3 gt gl gl gt gl gl gl Y bt gyl
ﬂ[:() Vs=0
Ji—1 ks—1
' ~ ' ' ; e k Koot s
—(gy g =gt eg) Y gl gl e Y e g el
a;=0 ys=0

It is not hard to see that this is equal to (3.8). Therefore, d F3 = F»03.
The proof is completed. |

Now we are able to accomplish the main task with a help of the results obtained above.
Define A to be the set of all sequences like

(39) (al’ .. ~’alv' .. 9anaa12, e ,al'j, e ,an—l,naa123»- .. »arst, .. -,an—2,n—1,n)

such that 0 <a; <mj, 0 <a;; < (m;,m;) and 0 < a5 < (m,,mg,m;) for 1 <[ <n,
I1<i<j=<n, 1<r<s<t=n where a;; and a5 are ordered by the lexicographic
order. In the following, the sequence (3.9) is denoted by a for short.

For any a € A, define a ZG-module morphism:

(3.10) ®, : B3 — k¥,

i in ,J1 in oK1 k
[gl ...gnn’gl ...g’{lﬂ,gl ...gnn]
n . rJ1 kg . ristks o
ST T e T gk
my mg (my,mg,my) "
I=1 1<s<t<n 1<r<s<t<n

Proposition 3.8. Suppose that k is an algebraically closed field of characteristic zero
and G = Zim, X +++ X Zim,,. Then {®q | a € A} is a complete set of representatives of normal-
ized 3-cocycles on G.

Proof. This is a direct consequence of Corollary 3.5 and the definition of the map F3
given in Proposition 3.7. m|

3.2. 3-coboundary. Later on, we will encounter the following problem: Given a 3-co-
cycle of the complex (B}, 07), we have to determine whether it is a 3-coboundary or not. In
this subsection, we want to solve this problem in case G is a finite abelian group. In fact,
Lemma 3.3 already provides us an easy way. For the bar resolution, it is sufficient to give a
chain map from (K, de) to (Be, 0s), which is a kind of inverse of the chain map defined in the
previous subsection and thus becomes much simpler. We use the following three morphisms
of ZG-modules defined in [26, Section 2]:

F1 2K1 —)Bl, ‘-P,J—)[g,-],
my—1

Fy:Ky— By, Wrsr>[gr.gs]—[gs. 8. Wrr> Y [ghgrl.
=0
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and

F3 : K3 — B3,
Vst [8r. 85.8¢) — 85, 8r+ 8¢) — (87 8¢+ 85) + [81- 8 8s] + (85 8¢.8r) — [81- &5 &7
my—1
Urrs > Y (1gh & 851 — gt gs. &r] + 25, 81 &/]).

=0
mg—1

\IJT,S,S = Z ([grv gé’ gS] - [gé’ gr, gS] + [gi-a gS’ gr])»
=0
my—1

Yrrr > Z [gr. gk gr].
=0

forO0<r<k,0<r<s<kandO0<r<s<t<k.

Lemma 3.9. The following diagram is commutative:

Ks—1 K~ k145 Ky Vi 0
[ O O
Bs—2 By —2 B, 2 B, 7 0.
Proof. The proof is routine and indeed becomes much easier, so we omit it. O

Corollary 3.10. Let ¢ € B} be a 3-cocycle. Then ¢ is a 3-coboundary if and only if
F}(¢) is a 3-coboundary.

Proof. Follows from the fact that F} induces an isomorphism between 3-cohomology

groups. O

3.3. Abelian cocycles. We start with the definition of abelian cocycles. For this, we
need to recall the definition of the twisted quantum double. The twisted quantum double
D®(G) of G with respect to the 3-cocycle ® over G is the semisimple quasi-Hopf algebra
with underlying vector space (kG)* ® kG in which multiplication, comultiplication A, asso-
ciator ¢, counit &, antipode &, o and 8 are given by

(e(g) ® x)(e(h) ® y) = bg(x,y)0gx pe(g) ® xy,
Ale(@)®x) = Y yx(h.k)e(h) ® x ® e(k) ® x,
hk=g
p= > dghhkle(@@IQe()®1Qe(k)® 1,
g.hkeG
8(e(g) ®x) = Og—1(x.x N7 yr(g.g™H lex gy @ x 7!,

ee(@) ®x) =681, a=1 p=) ®gg ' ge(@®]I,
geG
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where {e(g) | g € G} is the dual basis of {g|g € G}, 85,1 is the Kronecker delta,
g¥ =x"lgx, and

_ D(g.x, y)P(x, y, (xy) " gxy)

9 9 - )
s (x.) d(x,x"1gx,y)
(e y) = 200087 xg g7 yg)
g d(x, 2,87 yg)

forany x, y, g € G (cf. [8]).

Clearly, M is a left D®(G)-module if and only if M is a left-left Yetter—Drinfeld module
over (kG, ®) as defined in the previous section. For our purpose, we prefer the following
equivalent definition of abelian cocycles via twisted quantum doubles appeared in [28].

Definition 3.11. A 3-cocycle ® over G is called abelian if D®(G) is a commutative
algebra.

Remark 3.12. Abelian cocycles of the previous form and some related properties were
discussed by Ng [29] and by Mason—Ng [28]. In [29], Ng gave a quite symmetric description
of abelian cocycles. Note that the Eilenberg—MacLane abelian cocycles [10] are different from
the present ones. Recall that, an Eilenberg—MacLane abelian cocycle is a pair (®, d) where
® e 73(G,k*) and d is a braiding which is compatible with ®. But, we still have the following
observation: if (&, d) is an Eilenberg—MacLane abelian cocycle, then ® must be an abelian
cocycle in our sense. As this fact is not necessary for our following discussions, here we won’t
provide a proof.

As a direct consequence of this definition, we have the following conclusion.

Corollary 3.13. Every Yetter—Drinfeld module over (kG, ®) is diagonal if and only if
D is abelian.

Now we go back to the situation where G is an abelian group. So G &= Zy, X -+ X Zm,
withm; € N for 1 < j <n and m;|m;4; forall 1 <i <n —1. Let g; be a generator of
Zim; . By Proposition 3.8, we can assume that ® = ®, for some a € A. Using our formula
of 3-cocycles, we have the following conclusion which provides a quite explicit description of
abelian cocycles.

Proposition 3.14. The 3-cocycle @4 is abelian if and only if

arst =0

foralll <r <s <t <n.

Proof. “«<”1If all arg; = 0, then by (3.10) it is not hard to find that
Dyu(x,y,2) = Pg(x,2,y)
for x, y, z € GG. From this, we can find that
Og(x.y) = bg(y.x)

for g, x, y € G, which implies that D ®2(G) is a commutative.
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“="1If arg; # 0 for some r < s < . For the sake of simplicity, assume that aj23 # 0.
Through direct computations, we have

O1 (82.83) = 1. Oy (83.82) = {1
This implies that

(e(z1) ® @2)(e(g1) ® g3) # (e(81) ® 23)(e(g1) @ 22). D

3.4. Resolution. Let G = Zy,, X --+ X Zp,, be as before and let &, be an abelian 3-
cocycle of G. One of our key observations is that &, can be “resolved” in a slightly bigger
abelian group G. More precisely, take G = Zy,, X - -+ X Zyy,, for m; = Iml.2 (1 <i<n). As
before, let g; (resp. g;) be a generator of Zy,; (resp. Zpy,;) for 1 <i < n. Using such notations,
we have a canonical group epimorphism:

7:6G—->G, gi—g (1=<i=<n).

From this map, we can pull back the 3-cocycles of (G and get many 3-cocycles over G. That
is, the map

¥ (Pe) : G xGxG —k*, (g.hz)> Pg(n(g), w(h),7(z)), g hzeG

is a 3-cocycle of G. Our observation is that 7*(®,) is indeed a boundary. In fact, consider the
map

3.11) JQ‘GXG—>k*
arx;(yi—yp) s s—5)
(CEERILP AL SARE g%")H]_[Z” O] e
=1 1<s<t<n

where y/ is the remainder of y; divided by m; for 1 <i < n. For simplicity, we just take
¢ = 2™/t fort € N. We are thus led to the following result:

Proposition 3.15.  The differential of J4 equals w*(®q), that is,

Proof. Indeed,

AJa) (&) g gq' - gﬁ”, [ gk

i l’l k .n kﬂ
Jalg]' g gt - gn ) alel g g T g )

+ intin _k kn in j in
Ta( gl ok gk g (g gl g gl

n
= (1_[ é—a”’(kl —kp) 1_[ é’;fjnjy.i,(ks_ké) l_[ é—;lnzlil(jl-i-kz—(jl-i‘kl)’)

=1 l<s<t<n =1

it —( ) a;(i;+j1)(k
X l_[ gncgstrtqtlgjﬁks (Jﬁh)))(l‘[;/l 1) (ki —

1<s<t<n =1

. , AN
% l—[ (gf;&tf'/[)(ks k)l—léam(ﬂ ) l—[ CQA%S./S—J‘Y))

l1<s<t<n =1 1<s<t<n
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ayip (i +k;—Cir+kr)) l_[ é-ast it (Jgt+ks—(is+ks))

IngIny

1<s<t<n

J§ +kg]

asti;[ ms
[T &

1<s<t<n

Zml
=/ 7
T
all;’[ilm, L]
Cm;

n
I=1
n
=1

. = -
= 1 (Pa) (g} - gl g g, gyt gk, o

Although the above conclusion is true for abelian 3-cocycles, it does not hold for non-
abelian 3-cocycles. Precisely, let ® be a non-abelian 3-cocycle on G. Then we will show
that there does not exist any finite abelian group G’ such that there is a group epimorphism
7 : G' - G making 7*(®) to be a coboundary (this is a surprising phenomenon, at least to
us). To prove this fact, we start with the following special case, and then reduce the general
case to this special case.

Lemma 3.16. Let ®, be a non-abelian 3-cocycle on G. Suppose that we have a group
epimorphism

7Ly X X Ly, = (g1) XX (gn) > G = (g1) X X (8n), & i

Then 7t*(®q) is not a coboundary on 7y, % -++ X 7y, .

Proof. Since ®,4 is not an abelian cocycle, there are r < s < ¢ such that a,s; # 0 by
Proposition 3.14. Without loss of generality, we assume that @123 7# 0. Assume that 7% (®Dg4)
is a coboundary. By Corollary 3.10, F3 (7*(®g)) is coboundary and then Lemma 3.3 implies
that 5 (7*(®Pg4))1,2,3 = 1. But, direct computation shows that

F3*(7T*(q)g))1,2,3 = F3*(7t*(CDQ))(\I/1’2’3)
= 1% (Pa)([g1. g2, &3] — [82. g1, &3] — [21. g3, £2]
+ [23.81. 82] + [22. 83. &1] — [g3. 82. £1])
= Og([z1. 82. 83] — [22. 81. 83] — [81.83. 82]
+ [23. 1. 22] + [22. 83. 21] — [23. 22. &1])
— g AL

This is a direct contradiction. O

Proposition 3.17. Let ®4 be a non-abelian 3-cocycle on G and let G be an arbitrary
finite abelian group. Suppose that we have a group epimorphism 7w : G — G. Then 7w*(Pq)
is not a coboundary on G.

Proof.  On the contrary, assume that 7*(®,4) is a coboundary on G. Let g; be a preimage
of g; for 1 <i < n. Let G be the subgroup generated by g1, ..., g, and so we have a group
embedding ¢ : G; — G. Assume that ord(g;) = /;. Then clearly we have the following group
epimorphism:

7'l XX D (h1) x - x(hp) = G1, h; — gi.

n =
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Define fi :==ton’:Z; x---x7Z;, — G and f := 7 o fi. Note that by definition, the map
f is given by

Ly, x--xty, -G, gi—g (1=<i=<n).
If 7*(®g) is a coboundary on G, then f}*(7*(®g)) = f*(Pg) is still a coboundary. But this
is absurd by Lemma 3.16. O

4. Nichols algebras of diagonal type in gyﬁ)q’

The aim of this section is to give a classification of the Nichols algebras of diagonal type
with arithmetic root system in %Z‘/!Dq’. The idea to realize our purpose consists of five steps.
Firstly, we can assume that the support group of B(V') is (G, and from this assumption we
can prove that ® must be an abelian 3-cocycle over GG. Secondly, we will develop a tech-
nique to change the base group from @ to a bigger one G together with a group epimorphism
7 : G — @G. Thirdly, we will show that any Nichols algebra B(V) in g?/c@cp is isomorphic to
a Nichols algebra in gyi)” “(® which is thus twist equivalent to a usual Nichols algebra by
Proposition 3.15. Fourthly, we want to get a return ticket, that is, we will give a sufficient and
necessary condition to determine when a Nichols algebra in %Zy{()” SN isomorphic to one in
%MD‘D. Finally, combining these results and Heckenberger’s classification of arithmetic root
systems, we obtain the classification of Nichols algebras of diagonal type with arithmetic root
system in giy@q’.

4.1. Start points. We give two conclusions as our preparations for classification. At
first, we will prove that any Nichols algebras of diagonal type can be realized in % YD, where
G is an abelian group and @ is an abelian 3-cocycle over (5. Recall that in Remark 2.8, we
gave the definition of the support group for any V' € %y@q). For convenience, we denote the
support of V' by Gy and it is not hard to see that Gy = Ggy) = G14(v)-

Lemma 4.1. Let B(V) be a Nichols algebra of diagonal type in %yﬂ)q), and let
G’ = Gg(v) be the support group of B(V). Let ¥ = ®|¢y. Then G’ is an abelian group
and ¥V is an abelian 3-cocycle over GG'.

Proof.  Firstly by Remark 2.8, we know that G’ lies in the center of G and thus it is an
abelian group.

Next we will prove that W is an abelian 3-cocycle over (3'. Assume without loss of gener-
ality that G’ = Zp, X -+ X Zim,, = (g1) X -+ X (gn), and W is of the form (3.10). According
to Proposition 3.14, we only need to prove that a,s; = Oforall 1 <r <s <t <n.

At first, fix a triple (r,s,7) suchthat 1 <r <s <t <n. Since G' = (hy, ..., hy), we

have g, = hlf' ---h,’;’", where k1 < |h1],...,km < |hm|. Here |g| means the order of g. Con-
versely, h; (1 <i < m) can be presented by the generators of G/, i.e. h; = gi“ g,?”, and
we get

i 0 (modmy) ifl #r,
> kicy = .
1 (modm,) ifl =r.

i=1
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By (3.10), we have
_ Cijajst
V(hiogs.8) = [T Somimsmn
1<j<s

o)

- (i kiciy) _ s

. ki _ Ajst\2i=1KiCij) __ rst
1_[ W(hi.gs. 80)™ = 1_[ é'(ritj,ms,mz) - C(mr,ms,mz)'
i=1 1<j<s
On the other hand, since kX; (1 <i < m) are one-dimensional (kG/ \Ilh )-represen-
tations, \Ifh (gs.g¢) = \I—'h (g¢.gs). It follows by a direct computation that ‘I/h (gs.g:) =1
(since s < t), and thus
qjh,’(gt’ gS) = \Ijhi(gs’gt) =1

Hence
W(gs, hi, gt) CipQspt CigQst 1
V(hi gs.81) = -~ = Cimem, [ C o ] .
1os W(gs, g1, hi) Kl;lq (ms,mp,my) t<ql_£n (ms,mi,mgq)
Then we get
P CipQspt CiqQst
1_[ V(hi, gs.g1)" = 1_[ { l_[ z(mi,rrf,,,m;)[ 1_[ é(mqy mj,mq)] }
i=1 i=1 ‘s<p<t t<q<n
_ axpt(Z:ﬂ:lkici ) astq(zz'nzlkiciq) -1
- l_[ Z(m.v,mp,mz) ! [ 1_[ g(ms,mz,mq) ]
s<p<t t<q<n
=1.

Arst

(nomgmy) = = 1 and this implies a,5; = 0 since 0 < ayg; < (My, Mg, Mmy). 0O

So we obtain ¢

For our purpose of classification of Nichols algebras 8 (1) of diagonal type in 82/i)q’,
it is harmless to assume in the rest of the paper that the support group of 8(V') is G and thus
G is abelian and ® = ®4 is an abelian cocycle.

Secondly, we will show that there is a nice grading on B(V) € gyi)(b. LetV € g‘y@q)
be a Yetter—Drinfeld module of diagonal type and {X; | 1 <i </} a canonical basis of V.
Let Z! be the free abelian group of rank / and assume that e¢; (1 <i </) are the canonical
generators of 7. The following fact is very important for our follow-up discussions, which is
indeed [23, Lemma 4.2]. We include a proof here for completeness and safety.

Proposition 4.2. There is a 7! -grading on the Nichols algebra B(V) € gy@<b by set-
ting deg X; = e;.

Proof. Obviously, there is a 7!- -grading on the tensor algebra Tg(V) € Giyi)q) by as-
signing deg X; = ¢;. Let I = P;5 I; be the maximal graded Hopf ideal generated by ho-
mogeneous elements of degree greater than or equal to 2. To prove that B(V) is 7! -graded, it
amounts to prove that [ is /i -graded. This will be done by induction on the IN-degree.

To this aim, let I*¥ := @, 4 I; for k > 0. Since I = @, I; is generated by homo-
geneous elements of degree grea?er_ than or equal to 2, we have -

1°=1,=0 and I'=Iy® 1, =0.
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Hence 7° and 7' are 7Z!-graded. Now suppose I is 7Z'-graded for a fixed k > 1. We shall
prove that 75+ = @g_; ;. I; is also Z'-graded.

Let X € Ij4; and X = X' 4+ X2 4 .- + X", with each X’ being Zl—homogeneous
and X’ and X/ having different 7! -degrees if i # j. Write

AXH=X"®@1+1®@X +(X')1 ® (X),.
By definition, wehave A(X) = X ® 1 + 1 ® X + (X)1 ® (X)2, where
(X)1® (X)2 € To(V) ® I + 1¥ @ To(V).

ie, Y(X) 1 ®@ (X)) eTe(V)® Ik + 15 @ To (V). According to the inductive assump-
tion, Te(V) ® I¥ + I* @ Te (V) is a Z!-graded space. So each (X?); ® (X?), is an element
of Te(V) ® IK + ¥ @ T(V) as A preserves Z!-degrees. If there is an X' ¢ I 41, then
I + (X') is a Hopf ideal properly containing I, which contradicts the maximality of 7. It
follows that X’ € I;; forall 1 <i < n and hence I k+1 s also 7! -graded by the assumption
on X . This completes the proof of the proposition. O

4.2. Change of base groups. Since Nichols algebras in the braided tensor category
%Zyﬂ)q) are non-associative algebras, the structures of these algebras depend on (G and the 3-
cocycle @ on G. We will call GG the base group of B(V). One of the most important methods
of this paper is to change the base groups of Nichols algebras. We need the following definition.

Definition 4.3. Let 83(1') and B(U) be Nichols algebras in giyi)cb and g ypY, respec-
tively, with dim V' = dimU = [. We say B(V) is isomorphic to B(U) if there is a Z-graded
linear isomorphism ¥ : B(V) — B(U) which preserves multiplication and comultiplication.

Lemma 4.4. Suppose (V,8y,>) € gyi)‘P and (U, 8y ,>) € giy{l)‘y. Let G' and H' be
support groups of V and U, respectively. If there are a linear isomorphism F : V — U and a
group epimorphism f : G’ — H' such that

4.1) bpyoF =(f ® F) oy,
4.2) F(grv) = f(g)> F(v),
Plg: = f*¥|g

forany g € G', v € V, then B(V) is isomorphic to B(U).

Proof. Let ¥ : Tg|,, (V) — Trx(y|,,)(U) be the multiplicative linear map such that
F|v = F.ltis easy to show that F also preserves the comultiplication between Tg|,, (V') and
Tf+w|,)(U). By Corollary 3.13 and Lemma 4.1, both V' and U have canonical basis. Let
{X; | 1<i <1} be a canonical basis of V, then it is obvious that {¥; = F(X;) |1 <i <[}
is a canonical basis of U by (4.1) and (4.2). Let {¢; | 1 <i <[} be the free generators of Z.
Then Ty, (V) and Ty«(y),,)(U) are 7! -graded by setting deg(X;) = deg(Y;) = e;. Note
that ¥ induces a one-to-one correspondence between the set of Z!-graded Hopf ideals of
Tg|,, (V) and that of Tr«(y|,,)(U). By Proposition 4.2, we know that the maximal Hopf
ideals generated by homogeneous elements of degree > 2 in T, (V) and in Ty« (y),,,)(U)
are 7'-graded. It is obvious that ¥ maps the maximal Hopf ideal of Ty, (V) to that of
Tr+w|,,)(U). Therefore, ¥ induces a linear isomorphism from B(V) to B(U) which pre-
serves multiplication and comultiplication. m)
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The following definition is convenient for our later expositions.

Definition 4.5. If (F, /) is an isomorphism from B (V') to B(U) as in Lemma 4.4, then
we say B(V) is isomorphic to B(U) through the group morphism f.

Suppose

G = Zm; X+ X L, = (81) X -+ X (),
G =Zmy X+ X L, = (g1) X+ X (gn),

where m; = III]I-Z forl1 <i <n. Let
7 :kG - kG, g g, 1<i<n
be the canonical epimorphism. Observe that 7z has a section
n . n .
t: kG — kG, Hg;’ — Hgll:’
i=1 i=1

which is not a group morphism. Let 87, and > be the comodule and module structure maps of
Ve gyi)q’. Define

oLV —>kGQRYV, pr = (L ®1id)dr,
> kGRV >V, gp»Z=rn(g)rZ

forallge Gand Z € V.

Lemma 4.6. Defined in this way, (V, pr,®), denoted simply by V in the following, is
an object in gyi)” ®

Proof. This can be verified by direct computation:
e (fo»Z)y=n)r(n(f)>Z)
= ®;(n(e), n(f)(x()n(f) > Z
= ”*(cb)t(z)(ea fef»Z
foralle, f e Gand 6, (Z) =z QR Zfor Z € V. |
Proposition 4.7. For any Nichols algebra B(V) € %yi)cb, the Nichols algebra

B(V) € gny” (@) g isomorphic to B(V). Moreover, B(V) is twist equivalent to a usual
Nichols algebra.

Proof. The first statement is a direct consequence of Lemma 4.4. For the second, just
note that 77 *(®) is a 3-coboundary on G by Proposition 3.15. |
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To summarize so far, we have found the following route of transforming a non-associative
Nichols algebra to a usual one:

4.3) BWV) e %Zyi)cb (original Nichols algebra)
lLemma 4.4 and Lemma 4.6
~ R(TV)ecG *(®)
B(V) = B(V) e $Yp”
lProposition 3.15

JB(V) is twisted equivalent to a usual Nichols algebra B(V')’

Since we only want to classify finite-dimensional Majid algebras, there is no harm to
assume that all the usual Nichols algebras appearing in this paper have arithmetic root systems.
According to this diagram, each diagonal Nichols algebra B(V) € %yi)q) is corresponding to
a usual diagonal Nichols algebra, denoted by B(V')’ for convenience, in the above way (and
thus a unique way). Note that there is a Z-graded linear isomorphism B(V) 2 B(V)'. Thus,
it is reasonable to make the following definition.

Definition 4.8. The arithmetic root system of B(V') is defined to be that of B(V')’. That
is, A(B(V))y,E := A(B(V)'),E by the prescribed notations in Section 2.5. In particular, the
root system A(B(V)) of B(V) equals A(B(V)).

The aim of this section is to classify the Nichols algebras of diagonal type with arithmetic
root system in %Z%‘Dd). Using diagram (4.3), we just need to answer the following question:
For a usual Nichols algebra 8 of diagonal type with arithmetic root system, when is 8 gotten
from a Nichols algebra B(V) € %;yj)q’? That is, find a return trip of diagram (4.3).

4.3. The return trip. Keep the notations of the previous subsection. At first, we give
the inverse version of Proposition 4.7.

Lemma 4.9. Let B(V) € Giyi)” ®) pe a Nichols algebra of diagonal type and let
{Yi | 1 <i < m} be acanonical baszs of V. Then B(V) is isomorphic to a Nichols algebra in
gy£¢ through 7 if and only if

gi»Y =Y, 1<i<n 1<j<m.

Proof. 1f g;mi » Y; = Y}, then one can easily show Visan objectin %y@q) by defining

o,V ->kG YV, 67, = (r ®1id)pr,
> kGRV =V, g>Z=1g)» Z.
It is obvious that (idy, i) is an isomorphism between the Nichols algebras B(V) €@ cyo”" (@)
and B(V) € EYD?.
For the other direction, suppose (F, ) is an isomorphism from B(V) € Giy@” @ o
BW) € Giyi)q’ Then by Definition 4.8 and equation (4.2), we have
F(g;" » Y;) =n(g;") » F(Y;) = F(Y)).

This implies g;" » Y; = Y; foralll <i <n,1 < j <m. 0
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Now fix a usual Nichols algebra of diagonal type B(V)’ € 82%@ with support group G.
According to (4.3), we need to answer the following question:

Question 4.10. When is B(V)'/« isomorphic to a Nichols algebra in % YD Pa through 7 ?

Let{X; | 1 <i < m} be acanonical basis of V. Assume that
8 (Xi) =hi ® Xi,  gx > Xj = qi; X;

forl <i,j <m,1 <k <n,h; € Gand dkj € k*, where 8}4 (resp. >’) is the comodule (resp.
module) structure map of B(V)' € gyi). So there are 0 < xi;, ;x < my such that

Xkj Sik

n
9kj = Smy » hi:l_[gk
k=1

for 1 <i,j <m and 1 <k <n. Let X = (Xjj)uxm. By assumption, the support group
Gawy = G and {h; | 1 <i < m} generate the group G. So there are ;; € N such that

By S and T, we denote the matrices (;)mxn and (Z;;)nxm. It is obvious that

I (modm;) O (modmi) --- 0 (modmy)
“44) TS — 0 (mo.dmz) 1 (moidmz) -+ 0 (mo'dmz)
0 (modmy) 0 (modmy) --- 1 (modmy)

With these notations, we can now give the answer to Question 4.10.

Proposition 4.11.  The twisting B(V)'’« is isomorphic to a Nichols algebra in %Zy{D Pa
through 1 if and only if the following congruence equalities hold:

m
(4.5) > xij; =0 (modmy), 1<I<i=<n,
j=1
m
(4.6) injtij =a; (modrfni), 1<i<n,
j=1
m
(4.7) (injzlj)ml = mja;; (modm;m;), 1<i<I[<n.
=1

Proof. By Lemma 4.9, B(V)'/« is isomorphic to a Nichols algebra in %Zyi)q’i if and
only if g;" v/, X; = Xj forall 1 <i <n,1 < j <m. By definition, we have

_ Jg(gfnl’hj) m; l>, X _ Jl(gfnlahj) rrnl-xin.

= o = e i
Jﬂ(hjvgm) ! / Jg(h],g;m) " /

i

m; /
g Py, Xj
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foralll1 <i <n,1 < j <m. Using (3.11),

Jg(glr'mi»hj) miXij _ 1 m; X j

;. om; T caisjim; a;jSikm; >Mi
Jg(h]’gi ) m; Hi<k§n m;mg

. . . m; / R . .
Soforalll <i <n,1 =< j <m,equations g; A X; = X; are equivalent to
S Qi dinSinm:
4.8) =L ] Gl
i<k<n

Next we will show that equations (4.8) are equal to equations (4.5)—(4.7). At first, we assume
that (4.8) hold. Then for any 1 </ < n, we have

(4.9) ;I'Tlliixij iy _ fniitljsjimi 1—[ §fﬁﬁgis’km'
i<k<n
Considering the product on both sides of equations (4.9) for j = 1,...,m, we get
m
mlxljt[j altljsjlml alkt/jsjkml
Z Emz mpg
j=1 i<k<n

which is equal to

Y mixijtg i tysjim air Y- L1 Sk
(4.10) = m, [] ¢

m; m; Mg

i<k<n

When i > [, by (4.4), equations (4.10) become
@.11) o =,

These imply that 271=1 xjjt;; = 0 (mod m;), which are equations (4.5). When i =/, then
equations (4.10) become

(4.12) Yl mixijti; a;jm;

m; - Sm; >
which imply equations (4.6). When i < [/, then equations (4.10) become

(4.13) YU mMiXiit; g m;

mj — Sm;my°’

which are the same as equations (4.7).
Next, we assume that (4.5)—(4.7) hold. Clearly, equations (4.5)—(4.7) are equal to (4.11)—
(4.13). Considering the product of these three identities, we get

m

m;X;jt;; a;t;;s;;im; Aifly;S;em;
(4.14) ]‘[z 171 ]_[ S T catfa <™

=1 i<k<n

for 1 <i,] <n. Let T/ be an m x m-matrix such that tl./j =gjforl <i<n, 1<j<m
and otherwise tl./ ;= 0. From (4.4) we know that the rank of T’ is n. So forany 1 <i <n,
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ther.e exists an m X m—matri?< S; = (s;k) such that > ", Sji'ktl/cl = ;8 foralll < j, I <m.
Taking s;,’s power of equation (4.14), we have

m
HngXIjsrltlj 1—[ a, STty S im; 1—[ é-aiks;ltljs/kmi]
m; Mg .

i<k<n

By taking the product of the identity above for 1 <[/ < m, we get

m m

m;x;;sh a;s’ tisi;m aixst t;isipm;
(4.15) l_[l_[é-tzjrlj l_[l_[ lrljjlll_lgni[mrlé]j z]‘

I=1j=1 I=1j=1 i<k<n
The left-hand side of the identity is
[T e =TT T an ™ = e
I=1j=1 I=1j=1
The right-hand side is

1111

a Srlt[]sjlrfnl 1—[ é_a,ks;ll‘ljS_/'k]m,':I

:js

m;my
l=1]=1 i<k<n
n m .ol ¢! .. . . v/ . .
S IR (R ) B
- mi m; Mg
I=1j=1 i<k<n
— é‘a iSriIm; 1_[ é‘alkslkml
m; Mg
i<k<n
Hence (4.15) is actually identical to (4.8). O

Remark 4.12. As we pointed out at the paragraph after Corollary 3.13, we can assume
that m; |m; for i < j. We will keep this assumption in the rest of the paper. In this way, the
identities in (4.7) are equal to

—qull/ =q;; (modmy), 1<i</[ <n.
]—1

The above proposition implies that we do not have many choices on the sequence a € A,
see (3.9).

Corollary 4.13. For the Nichols algebra B(V)' € GZyJD there is at most one a € A
such that B(V)7« is isomorphic to a Nichols algebra in Gyi)q)“ through . Moreover, this a
exists if and only if equations (4.5) hold and in this case a can be taken in the following way:

m
(4.16) a; = injl‘ij (modmi); aj = — le]tlj (modml) aijly = 0
Jj=1 j_l

forl<i<ml<i<l<nandl<i<Il<t<n.
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Proof. By Proposition 4.11, we know that @ must satisfy equations (4.6) and (4.7).
At the same time, since we always assume that ®, is an abelian cocycle, a,s; = 0 for all
1 <r <s <t <n by Proposition 3.14. Therefore, there is at most one a that satisfies these
conditions. Proposition 4.11 also implies that such an a exists if and only if equations (4.5)
hold. ]

Now we are in the position to find the “return trip” as follows:

@4
4.17) B(V) € YD

T(4.5) hold

Ja ¢ Gypyr*(@a)
B(V) e e Gyp™ (®a
Tby (4.16), find J4

usual Nichols algebra B(V) € gZyJD

4.4. Root datum and classification of Nichols algebras of diagonal type with arith-
metic root systems in g yn°e. By (4.17), we want to formulate the conditions listed in (4.17)
by the language of root data. Using such language, we get a complete classification of Nichols
algebras of diagonal type with arithmetic root systems in %yi)q).

Now suppose (/\, x. E) is an arithmetic root system, and £, g is the Dynkin diagram
of (A, x. E). Up to twist equivalence, (A, x. E) is uniquely determined by D, g. In [20],
Heckenberger classified all the arithmetic root systems. Fix a Dynkin diagram with m vertices.
We call

9ii = x(ei.ei). Gij = x(eiej)x(ej.e) |1 <i,j <m]

the structure constants of D, .

Definition 4.14. Let G = Zy,, X -+ X Zm,, be the abelian group defined as above and
setm; = Irnl.2 for 1 <i < n. Suppose Dy, g is a Dynkin diagram of an arithmetic root system
Ay, E and (g;;,q;;) is the set of structure constants. Moreover, suppose there exist parameter
matrices S and X such that

(1) S = (8ij)mxn is a matrix with integer entries 0 < s;; < m; foralll <i <m,1 < j <n
such that there exists a matrix T = (#;; )nxm satisfying (4.4);

(2) X = (Xij)nxm 1s a matrix with integer entries 0 < x;; <m; forall 1 <i <m,1<j <n

such that
n

n

o SikXki ~ SikXkjtSjkXki

qgii = l_[ nék ", qij = 1_[ ka
k=1 k=1

and satisfying (4.5).

Then we call ©® = ©(Dy, g, S, X) aroot datum over G and moreover we call A (resp. Ay g)
the root system (resp. arithmetic root system) of .

For a fixed root datum © = D(Dy, g, S, X) over G, define a sequence a € A through
equations (4.16). Now we can define a Nichols algebra B(Vg) € gyi)” (®a) in the fol-
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lowing way: Let Vg be the Yetter—Drinfeld module in gy@” "(®a) with a canonical basis
{X; | 1 <i < mj} such that
n n S;
. "‘]a(gi’l_[kzl gk’k
(X =[] e* @ Xi, &> Xj =Gl —= A N
B A P = o

Now the main result of this section can be stated as follows.

Theorem 4.15. (1) The Nichols algebra B(Vs) is isomorphic to a Nichols algebra
of diagonal type with arithmetic root system in %Z%‘Dq)l through the group epimorphism
7:G6G— G.

(2) Suppose B(V') is a Nichols algebra of diagonal type with arithmetic root system in
%%‘Dq)ﬂ and the support group is G. Then there exists a root datum O over GG such
that B(Vy) = B(V') through the group epimorphism & : G — G.

Proof. The first statement is just a direct consequence of (4.17) and the definition of a
root datum. Now we show the second statement. According to (4.3), from B(}') one can con-
struct a usual Nichols algebra B(V)’. By the construction of B(V)’ we can find that B(V)"/«
is isomorphic to B (V') through 7. By Proposition 4.11 and the definition of a root datum, we
know that there is a root datum ® over G such that B(V)/e = B8(Vy). |

Convention 4.16. By this theorem, we know that the Nichols algebra 8 (V) is isomor-
phic to a unique Nichols algebra in %y{O ®a_ For convenience, this Nichols algebra is denoted
by B(D).

5. Classification results

In this section, all the finite-dimensional connected graded pointed Majid algebras M of
diagonal type will be classified. The main idea is to show that the coinvariant subalgebra of
M is indeed a Nichols algebra of diagonal type and from this we can apply the classification
results obtained in the previous section.

5.1. General setup. In this section, we always assume that M is a finite-dimensional
connected coradically graded pointed Majid algebra of diagonal type. From Section 2.1, we
know that

Mo = (kG, P)

where G is the group consisting of all the group-like elements and ® is a 3-cocycle on (5. Using
the same arguments given in Proposition 4.1 and our assumption that M being connected, we
know that G is abelian and ® is an abelian cocycle. Therefore,

G = Zigm X+ ++ X Lin,, = (81) X -+ X (@n)

with m;|m; for 1 <i < j <n, and
¢:®a

for somea € A witha,s; =0foralll <r <s <t <n.
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Let R be the coinvariant subalgebra of M. Then R is a Hopf algebra in %y@cp and
M = R#kG.

The main task of this section is to show that R is indeed a Nichols algebra in gy{l)q’. From
the classification results obtained in the previous section, we can classify M directly.

5.2. R is a Nichols algebra. Note that we already showed that each finite-dimensional
rank-2 pointed Majid algebra is generated by group-like and skew-primitive elements in [23].
We gradually realize that the methods developed in [23] still work for pointed Majid algebras
of diagonal type. For completeness and safety, the proof will be given though it is similar to
the version of [23].

The main result of this subsection can be stated as follows.

Proposition 5.1. In %%‘Dq’l, we have R = B(R).

We give several preparations. Take a Nichols algebra $(V') of diagonal type in %yJD Pa
Then according to (4.3), we have

B(V) = 8(V) e Syp™ (@)

and jS’(V) JB(V a ) is a usual Nichols algebra in & G YD. As before, we denote thlS usual
Nichols algebra by 8(V)" and we use V' to denote the Yetter—Drmfeld module 7/« . That i is,
BWVY =B(V'). Let {X; | | <i < m} be a canonical basis of V'. Then B(V') = T(V')/I
where I is the Hopf ideal of T (V') generated by the polynomials in {X; | 1 <i < m} listed
in [5, Theoggm 3.1]. In the following, let S denote the set of these polynomials. Define a map
W Ty (V) = Toz (V') = T(V') by

V(- ((Y1oYa)oYa)---Ya)) = [ [ Javi - yisyie)V1Y2 - Yy
i=1

forall ¥; € {X1, Xa,..., Xim}. Itis casy to see that W is an isomorphism of linear spaces. The
following conclusion is [23, Lemma 4.5].

Lemma 5.2. The set W~(S) is a minimal set of defining relations of B(V')’a = SB(V)

We also need the following two lemmas, which were given essentially in [5] and were
rephrased as follows in [23, Lemmas 4.6 and 4.7].

Lemma 5.3. Let Z be a polynomial in S. Then
BVe g k¥ (Z2)) = BV & kZ)e.

Lemma 54. Let B(V') € gﬁyi) be a finite-dimensional Nichols algebra of diagonal
type, Z a polynomial in S and U' = V' @ KZ. Then B(U’) is infinite-dimensional.

The following is a generalized version of [23, Propostion 4.8], where we proved it in the
rank-2 case.
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Proposition 5.5. Let R = ;. R; be a finite-dimensional graded (not necessarily
coradically graded) Hopf algebra in %—y@q}. If R is generated by Ry, then R = B(Ry).

Proof. Let I be an ideal of Te(R1) such that R = Te(R1)/I. Clearly, we have a
surjective Hopf map

0:R—> B(Ry).
By Proposition 4.7, 8(R1) is also a Nichols algebra in GZ/.,‘D” @ for G = Ly X =+ X L, -
By Proposition 3.15, 7*(®) = d(J). Therefore, i)’(Rl) Gyi) is a usual Nichols alge-

bra. Now assume that € is not an isomorphism. Then there should be some polynomials in
W~1(S), which are not contained in / by Lemma 5.2. Suppose that W~!(Z) is one of those
with minimal length. Then we know that U~!(Z) must be a primitive element in R. Let
U =R, ®kV!(Z). Then, by the preceding assumption, there is an embedding of linear
spaces B(U) — R.

We already know that B(R;)’ ' is a finite-dimensional Nichols algebra in Giyi) Itis
not hard to see that there exists R} € GYD such that Ry = R’ J (since J induces an equiva-
lence between 89@ and gyfl)a(” gy{()” (@), By Lemma 5 3, we have

B(R, @ 2)! = B(Ry @ k¥ 1(2)) = B(U).

Note that B(R] & Z )/ is infinite-dimensional due to Lemma 5.4. Hence B(U) is infinite-
dimensional, which contradicts the assumption that R is finite-dimensional. Thus 6 is an iso-
morphism and R is the Nichols algebra B(R1). |

In order to prove Proposition 5.1, we still need the following lemma.

Lemma 5.6. Let R = ®i>0 R; be a graded Hopf algebra in Gyfl)q) with Rg = k1
and P(R) = Ry. Then the right dual R* = ;- R} (resp. the left dual *R = P, *R;) is
generated by RY (resp. *R1).

Proof. Note that the proof of [23, Lemma 4.10] does neither depend on the abelian
group G nor on the abelian 3-cocycle ® of G. Hence we can prove the lemma in the same
way. |

Proof of Proposition 5.1. By assumption, Rg = k1 and P(R) = R;. According to
Lemma 5.6, R* = ,.,R" is generated by R]. By Proposition 5.5, R* = 8(R]). So
we have P(R*) = R7, and *(R*) = R is generated by R according to Lemma 5.6 again.
Hence R is also a Nichols algebra by Proposition 5.5. Thus, R = B(Ry). |

5.3. Classification result. For a root datum © = D(Dy g, S, X), there is a Nichols
algebra B(D) in %Zyi)cpﬂ, where a € A is determined by equations (4.16). If we denote
M(D) = B(D)#k@G, we can formulate the main result of the paper as follows.

Theorem 5.7. Keep the notations as before. We have:

(1) The Majid algebra M(D) is a connected coradical graded pointed Majid algebra of
diagonal type over the group G. Moreover, M(D) is finite-dimensional if and only if the
heights of all restricted Poincaré—Birkhoff-Witt generators of B(D) are finite.
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(2) Any finite-dimensional connected coradical graded pointed Majid algebra of diagonal
type over GG is isomorphic to a M (D) for some D.

Proof. It follows from Proposition 5.1 and Theorem 4.15. O

5.4. A corollary. In [2, Conjecture 1.4], Andruskiewitch—Schneider conjectured that
every finite-dimensional pointed Hopf algebras over k is generated by group-like and skew-
primitive elements. This is the so-called generation problem, which plays an important role in
the classification of pointed Hopf algebras. It is true in many cases, see [5]. This conjecture
was generalized to finite-dimensional pointed Majid algebras or even to pointed finite tensor
categories [14].

Corollary 5.8. Suppose M is a finite-dimensional pointed Majid algebras of diagonal
type. Then M is generated by group-like and skew-primitive elements.

Proof. Since M is generated by group-like and skew-primitive elements if and only if
its coradically graded version gr(IM) is, we can assume that M is coradically graded. Let R
be the coinvariant subalgebra of IM, and assume that its support group is H. Then R#k H is
a finite-dimensional connected coradically graded pointed Majid algebra of diagonal type, and
thus it is generated by group-like and skew-primitive elements according to Theorem 5.7. This
implies that M is also generated by group-like and skew-primitive elements. m]

6. Examples of genuine pointed Majid algebras

In this section, we provide some methods to construct genuine pointed Majid algebras
from arithmetic root systems. For each arithmetic root system /\ y,E of rank 0 satisfying a
mild condition, we show that there always exists a genuine pointed Majid algebra of standard
type M = !B(V)#kan, such that the arithmetic root system of B (V) is A +.E - For arithmetic
root systems of Cartan type, we also provide a unified method to construct genuine finite-
dimensional pointed Majid algebras.

6.1. Pointed Majid algebras of typical type. Suppose that M is a pointed Majid
algebra generated by the abelian group G and skew-primitive elements {X1,..., X} with
AXi)=X;®1+ g ® X;, 1 <i <n. Then as in our previous paper [23], we say that M
is of typical type if G = (g1) X -+ X (g,). This definition is transferred naturally to Yetter—
Drinfeld modules and thus Nichols algebras.

Definition 6.1. A Yetter—Drinfeld module V' in %Zyi) Pa of diagonal type is said to be of
typical type if there exists a canonical basis X7, ..., X, with degrees g1, ..., @,, respectively,
such that G = (g1) X -+ X (gn). The Nichols algebra B(V) € %y@‘l’g is typical if V' is so.

The definition is independent of the choice of the canonical basis. If V' € %yi) ®a i a
Yetter—Drinfeld module of typical type, then B (V' )#kG is a pointed Majid algebra of typical

type.
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Lemma 6.2. Let G = (g1) X -+ X (8n) = Zm, X -+ X L, and let ®g be an abelian
3-cocycle on G.

(1) Suppose V is a Yetter—Drinfeld module of typical type in %yi)(bﬁ and X1,...,X, is

a canonical basis of V. Let (x;;) be the numbers satisfying g; > X; = §];Cn’§ X; for all
1 <i,j <n. Then we have !

(6.1) Xij = 0 (modmi), > j,

(6.2) Xij = a; (modm;); m;x;; =m;a;; (modm;m;), i< j.

(2) Conversely, let V = Kk{X1,...,Xn} be a kGG-comodule such that the degree of X; is
g for 1 <i < n. If we have numbers (x;;)1<i,j<n Satisfying equations (6.1), then the
action

giv X;=00X;, 1<ij<n

makes V' a typical Yetter—Drinfeld module in gyi)q’ﬂ, where the sequence a are the
numbers determined by equations (6.2).

Proof. (1)Let G = (g1) x --- x (gn) be such that |g;| = m?, | <i < n. By Proposi-
tion 4.7, B(V') can be viewed as a Yetter—Drinfeld module in gy@ (®a) through

Q=

givX; =00X;, 1<ij<n

So B(V)’' € GYD. Since

_ J(gig))

= gi> X
J(gj.8)°"

8i >y X;
and J(gi.g;) = J(gj. &) = 1, we have
gi vy Xj =0X;.

Identities (6.1) and (6.2) follow from Proposition 4.11.
(2) Follows from Proposition 4.11. O

In the following, for a root of unity ¢ we use |g| to denote its order.

Proposition 6.3. Ler )\ y,E be a connected arithmetic root system of rank 0 listed in
[20] and let {q;i,qi; | 1 <i < j < 0} be its structure constants.

(a) Ifthereis aq;; or q;; such that its order is not of the form py ps - - - pn, where p1, ..., pp
are mutually distinct prime numbers, then there is a typical Yetter—Drinfeld module

kZ,en D,
Ve Kzt YD~
for some m and ®4 such that B(V)#kan is a genuine pointed Majid algebra of typical
type, and the arithmetic root system of B(V) is equal to Ay g.
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(b) Ifthe order of each q;; and q;; is of the form p1ps - -+ pn for some distinct prime numbers
P1, P1s---» Pn, then there is no typical Yetter—Drinfeld module in

Z5, d,
kZm YD
forallm > 1 and &4 # 1.

Proof. (a) Firstly, we define a function v : N — N by

(k) = k+1 ifkisodd,
k if k is even.

Let Y be the map
N1 N> N N.
T . IN — N, k — p] 1192 pn n — T(k) — p;)( l)pg( 2) p;/-;(Nn)

Here pi, p2..... pn are mutually distinct prime numbers. Let m; = |g;;|, m;; = |q;;| for
1 <i,j < 0. By m we denote the minimal positive number such that Y (m;)|m and Y (m;;)|m
forall 1 <i,j < 6. Then it is obvious that ./m is a positive integer, since all /Y (m;) and

VY (m;j), 1 <i,j <0 areintegers. Let m = /.

Next we will show that there is a typical Yetter—Drinfeld module

m P,
Ve kZ9 YD
for some nontrivial 3-cocycle ®, on Z,en. Suppose g1, ...,8g are free generators of Zg,,

that is, Zg’ = (g1) x---x(gg), and V = k{X1,...,Xg}is a an—graded vector space. For
1 <i,j <80,define
m>

a— it =,

0 ifgi; =11 # J,

Xij = cp— . .
0 ifg;; #1andi > j,

2 L .

n'f—” ifg;; # landi < j.

According to (2) of Lemma 6.2, g; > X; = {:1"‘2" Xj, 1 <i,j <0 makes V a typical Yetter—

Drinfeld module in

Zs, d>a
kZQ YD

where the sequence « is determined by equations (6.2). Since

m2 m2

X Xii X7 m;
é'mlzl :C,;:zl =dii gljg ‘S :é' U = qij

for 1 < i, j < 0, we prove that the arithmetic root system of B(V') is equal to A E.
At last, we will show that a is nonzero. From the assumption of the first part of the
proposition, there is an element ¢ in {g;;, g;; } satisfying the following conditions:

(Cl) |¢| = p1 -+ Pn Nn and there exists some [ such that N; > 2. Here p1, p2,..., Pn
are mutually distinct prime numbers.

(C2) leH fmi, p N“Ll Y mij it mi # (], mij # |C).
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If ¢ = g;; for some i, then by the definition of m and the choice of ¢, we have m } %j, which
implies a; # 0 (mod m) by equations (6.2). Similarly, if { = g;; for some i, j, then one can
prove that a;; # 0 (modm) by (6.2). We have proved that a is nonzero.

(b) Suppose there is a typical Yetter—Drinfeld module

ng’l a
Ve YD ®Pa
for some m > 1 and ®,. Then we will prove that &, = 1.

On the one hand, let { X1, ..., Xg} be a canonical basis of V and {gy, ..., g} the corre-
sponding degrees. Since V is a typical Yetter—Drinfeld module, an = (g1) x--- x (gg). Let
(Xij)1<i,j<6 be the numbers defined by g; > X; = {:;Z X;, 0 < x;; <m?. So by equations
(6.2), we have

(6.3) Xxii =a; (modm), 1<i <84,
(6.4) Xj; =a;; (modm), 1<i<[<8.
On the other hand, since the order of §:1’2’ = g;; is of the form pp --- p,, where py1,..., pn

are mutually distinct prime numbers, we have py --- p,|m, and hence m|x;;. This implies that
a; = 0 by equations (6.3). Similarly, from equations (6.4) one can show that a;; = 0 for
I<i<j<é. i

According to Proposition 6.3, we can construct a big class of genuine pointed Majid
algebras such that the corresponding Nichols algebras have arithmetic root systems.

Example 6.4. Let /\ x,£ be an arithmetic root system of the following type:
(1) rank-2 arithmetic root systems of cases 1-5, 7-12, 14 as listed in [20, Table 1],
(2) rank-3 arithmetic root systems of cases 1-8, 10, 18 as listed in [20, Table 2],
(3) rank-4 arithmetic root systems of cases 1-14, 22 as listed in [20, Table 3],

(4) higher rank (> 5) arithmetic root systems of cases 1-4, 7-10, 14, 19, 22 as listed in
[20, Table 4],

such that the parameter g (if there is a parameter ¢ in the root system) is a root of unity, and the
; Ny N> Ny . .

order of g is of the form pi"' p5,*--- p, ", where p1, pa...., py are mutually distinct prime
numbers, n > 3 and there exists at least one N; > 2 forsome 1 < i < n. Then we can construct
a genuine pointed Majid algebra of typical type M = B (V)#kZ,Gn such that the arithmetic root
system of B(V') is A, g, where the number m is listed in Table 1.

Explicitly, let 79 = (g1) x --- x (gg) and let V = k{X1,..., Xy} be a 72 -graded vec-
tor space with deg X; = g; for | <i < 6. Define

qiiX; ifi =j,
gi>X; =1q;X; ifi <},
X, ifi >
Then

| VA4
Ve “mypPe
k79,
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Arithmetic root systems ‘

m
1. | Rank 2: cases 1-4, 10; rank 3: cases 1-8, 10; m="Y(ql)if2 | |ql;
rank 4: cases 1-14, rank > 5: cases 1-4, 7-10,22 | m = 2Y(|q|) if 2 } |q|
2. | Rank 2: case 5 m = Y(ql)if 3] |ql;
m = 3Y(|q])if 3 + |q]
3. | Rank 2: cases 7-9 m=26
4. | Rank 2: case 11 m =4
5. | Rank 2: case 12 m=12
6. | Rank 2: case 14 m =10
7. | Rank 3: case 18 m =73
8. | Rank 4: case 22; rank 5: cases 14, 19 m=2

Table 1. The number m associated to each arithmetic root system.

where a is determined by equations (6.2). According to Proposition 6.3, ®4 is nontrivial and
M = !B(V)#kZ,% is a genuine pointed Majid algebra such that the arithmetic root system of

BV)is Ay g

Remark 6.5. The preceding construction provides many new examples of finite-dimen-
sional pointed Majid algebras. It is obvious that M = i)’(V)#ng, is finite-dimensional if
and only if B(V) is finite-dimensional, which is completely determined by its arithmetic root
system (= A v.E)- When A y.E 1s of rank 2, or of Cartan type, the associated pointed Majid
algebra M = B(V)#k Z% is finite-dimensional. For other cases, it is an open question whether
the corresponding Nichols algebras is finite-dimensional or not.

6.2. Finite-dimensional pointed Majid algebras of Cartan type. In this subsection,
we will give more examples of genuine finite-dimensional pointed Majid algebras. Let AX’ E
be an arithmetic root system. If A is a root system of a complex semisimple Lie algebra, then
we call A +,E an arithmetic root system of Cartan type.

Definition 6.6. Let M be a finite-dimensional connected graded pointed Majid algebra.
By Theorem 5.7, there exists a root datum © = D(Dy, g, S, X) such that M = M(D). If the
arithmetic root system of ® is of Cartan type, then we say that M is a pointed Majid algebra
of Cartan type.

According to [20], if B(V') is a usual Nichols algebra of diagonal type with finite root
system, and the rank of B(V) is 6, then there exist a bicharacter y on Z? and a basis E such
that A(B(V))y,E is an arithmetical root system. In fact, arithmetic root systems include more
information than root systems of Nichols algebras. For instance, all the rank-1 Nichols algebras
have the same root system, i.e., {&, —a}, but there are both finite-dimensional and infinite-
dimensional rank-1 Nichols algebras, hence they have different arithmetic root systems.
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Suppose C = (¢ij)1<i,j<¢ 1s a finite Cartan matrix. We say 1 <i # j < 0 are con-
nected if there exist k1, k2, ..., ky such that ¢; g, Ck kys -+ -+ Ckyy_ 1y » Ckyy,j AT€ NONZETO NUM-
bers. In this subsection, we will prove the following conclusion.

Proposition 6.7. Suppose that \ is a finite root system of Cartan type. Then there exist
an abelian group G and a root datum D = D(Dy g, S,X) over G, such that M(D) is a
finite-dimensional genuine pointed Majid algebra and the root system of ® is \.

Proof. Let C = (cj)1<i,j<o be the finite Cartan matrix corresponding to A, and let
D = §(d1,...,dp) be the diagonal matrix such that DC is symmetric. Let § be the set of
connected components of {1,...,0}. Fix an order < on . For each I € J, define a positive
odd integer my > 2 satisfying the following:

(T1) If I,I'" € $and I < I’, then my|m;y-.
(T2) If I is of type G3, we assume that 3 } my.
Letgq; = Cm% be a primitive m%—th root of unity, and ¢g;; = q;i", iel,l ed.Define

_di i
aij =q; ", qji=1
forall1 <i < j <@.Let E = {ey,...,ep)} be the canonical basis of Z? and y a bicharacter
on Z? given by
xleiej) =qij, 1<i,j<80.

Then it is obvious that A, g is an arithmetic root system. Set
G =%m; X X ZLm, = (g1) ¥ x(8p).

where m; = my,i € I. Next we will show that there exists aroot datum ® = D(Dy,g. S, X)
over @.

Let S = (sij)1<i,j<¢ be the identity matrix, i.e., s;j = &;;, 1 <i,j < 0. Then the in-
verse matrix 7' = (#;;) is also the identity matrix. Forall 1 <i, j < 6, define X = (x;;)1<; j<6
through

d; ifi =j,
Xij = §—dicij ifi < j,
0 ifi > J.

Then we have
m
inﬂkj =Xjp =0(modm;), 1=<k<i<n,
J=1
which implies (4.5).
According to the definition of x;;, it is obvious that

n

SikXki — FXii — /..
1_[ Cn’llk = é‘mlil - qllv
k=1
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where m; = rrnl.2 forl <i <6.Wheni < j, we have
n
SikXkjvSjeXki _ —Xij o~
Hgmk =d4;; = 4ij4ji = 4ij-
k=1

This implies that © = D(Dy, g, S, X) is aroot datum over G. Since a; = x;; = d; (modm; ),
we have a; # 0 for each i. Hence a is nontrivial, which implies that M (®) is genuine.

Finally, we prove that M (®) is finite-dimensional. We need to show that for any « € A"',
the nilpotent index N, is finite. Let /\; be the root system corresponding to / € . Itis obvious
that A = ;¢ 3 /\;- Let G be the bigger group defined by G and 7, (; see the sentences before
Lemma 4.6. We know that there exists a 2-cocycle J on G such that

U=v®)  eklyp

and B(U) and B(D) have the same root system. Because the nilpotent index of a root vector
is invariant under twisted deformation by J, we only need to prove that the nilpotent index of
the arithmetic root vector of B(U) is finite. According to [4, Theorem 5.1] and (T2), for all
o€ A;L, I € §,wehave Ny = Ny = |qii|, i € I, hence the nilpotent index must be finite.
This completes the proof of the proposition. O

Remark 6.8. From the proof of Proposition 6.7, we see that there are many choices
of @&, hence many pointed Majid algebra associated to each arithmetic root system of Cartan
type. This also provides a large class of examples of new genuine finite-dimensional pointed
Majid algebras.

Acknowledgement. We would like thank the referee for his/her very valuable com-
ments which improved the paper greatly.
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