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Finite quasi-quantum groups of diagonal type
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Abstract. In this paper, we give a classification of finite-dimensional radically graded
elementary quasi-Hopf algebras of diagonal type, or equivalently, finite-dimensional coradi-
cally graded pointed Majid algebras of diagonal type. By a Tannaka–Krein type duality, this
determines a big class of pointed finite tensor categories. Some efficient methods of construc-
tion are also given.

1. Introduction

The classification problem of finite quasi-quantum groups is motivated mainly by the
theory of finite tensor categories [15]. Among which, the classification of elementary quasi-
Hopf algebras, or equivalently finite-dimensional pointed Majid algebras, has attracted much
attention in the last one and a half decades. Quite a few examples and classification results of
such algebras, and consequently the associated pointed finite tensor categories, were thus ob-
tained, see e.g. [6,11–13,16]. In these studies, Etingof and Gelaki’s novel idea of constructing
genuine quasi-Hopf algebras from known pointed Hopf algebras plays a key role. This also
builds a substantial connection from pointed finite tensor categories to the beautiful theory of
finite-dimensional pointed Hopf algebras [1, 4], rather than just making the latter a role model
in view of the obvious similarity.

The basic idea of Etingof and Gelaki in [11–13] is to embed a genuine elementary quasi-
Hopf algebras into an elementary quasi-Hopf algebra, possibly up to twist equivalence. The
crux of these constructions is that there is a resolution for any given 3-cocycle on a cyclic group,
namely, for any 3-cocycle � on Zn D hg j gn D 1i, the pull-back ��.�/ along the natural
projection � W Zn2 ! Zn is a 3-coboundary on Zn2 . With this idea, the result of 3-cocycles
on abelian groups of the form Zm � Zn obtained in [25] helps us to go a step forward in
constructing new finite quasi-quantum groups. In our previous work [23], we gave a complete
classification of finite-dimensional coradically graded pointed Majid algebras of rank 2. As a
continuation of [23], the present paper aims to classify diagonal finite quasi-quantum groups
of arbitrary rank.
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202 Huang et al., Finite quasi-quantum groups of diagonal type

In this paper, we generalize the working spirit of [23] to the relatively general situation.
Hence we need to solve four main problems as follows. The first problem, finding a resolu-
tion for any normalized 3-cocycle, lies basically in cohomology of finite abelian groups. By
extending the idea of [25], we are able to give a unified and explicit formula for a complete set
of representatives of normalized 3-cocycles on any finite abelian groups. Moreover, we show
that a 3-cocycle is resolvable by a finite abelian group if and only if it is abelian and we give
an explicit resolution if this is indeed the case. This is also the essential case where diago-
nal Nichols algebras occur for twisted Yetter–Drinfeld categories. For the second problem, to
give a clear description of diagonal Nichols algebras in the twisted Yetter–Drinfeld category
G
GYDˆ, we transform them to those in the usual Yetter–Drinfeld category GGYD by a delicate
manipulation, whereG is a finite abelian group with canonical projection � W G ! G such that
��.ˆ/ is a 3-coboundary on G. The possibility of such a transformation is guaranteed by the
first step. Then by combining Heckenberger’s classification of arithmetic root systems [20], we
achieve a complete classification of diagonal Nichols algebras with arithmetic root systems in
G
GYDˆ. With the transformation, we can also reduce our third problem of generation into that
of Nichols algebras in the usual Yetter–Drinfeld categories of finite abelian groups. With the
help of Angiono’s result [5], we extend the useful idea in [23] to the general situation and prove
that finite-dimensional pointed Majid algebras of diagonal type are generated by group-likes
and skew-primitive elements. The second and third steps together provide a complete classi-
fication of finite-dimensional graded pointed Majid algebras of diagonal type in a conceptual
way. Finally, we shall need to turn the conceptual classification into an operable construction,
our fourth problem. For any given finite abelian group with fixed 3-cocycle and a compati-
ble arithmetic root system, the construction is essentially a computational problem of linear
congruence equations. We find two efficient ways, for most cases, to generate series of new
genuine finite-dimensional pointed Majid algebras.

Here is the layout of the paper. Section 2 is devoted to some preliminary materials. In
Section 3, we provide an explicit formula for normalized 3-cocycles on finite abelian groups
and give resolutions of the abelian ones via finite abelian groups. In Section 4, we give a
complete classification of diagonal Nichols algebras with arithmetic root system in the twisted
Yetter–Drinfeld category GGYDˆ withˆ nontrivial. Then, in Section 5, we classify in a concep-
tual way all the connected finite-dimensional graded pointed Majid algebras of diagonal type.
Finally, in Section 6, we provide some methods to construct new genuine finite-dimensional
pointed Majid algebras.

Throughout the paper, k is an algebraically closed field with characteristic zero and all
linear spaces are over k. A left (resp. bi-) G-comodule M , by definition, is a G-graded (resp.
bigraded) space M D

L
g2G

gM (resp. M D
L
g;h2G

gM h). In general, we only deal with
homogeneous elements unless stated otherwise. For convenience, if X 2 gM (resp. X 2 gM h)
then we use its lowercase x to denote its degree, that is x D g (resp. x D gh�1). In accordance
with our previous works [21–24], we only work on pointed Majid algebras. By taking linear
dual, one has the version for elementary quasi-Hopf algebras.
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2. Preliminaries

In this section, we recall some preliminary concepts, notations and facts. Clearly, there
are some inevitable overlaps with the counterpart of [23]. For the completeness and for the
convenience of the reader, we recall some materials presented already in [23].

2.1. Majid algebras. By definition, Majid algebras are exactly the dual of Drinfeld’s
quasi-Hopf algebras [9], and can be given as follows.

Definition 2.1. A Majid algebra is a coalgebra .M; �; "/ equipped with a compatible
quasi-algebra structure and a quasi-antipode. Namely, there exist two coalgebra homomor-
phisms

M WM˝M!M; a˝ b 7! ab;

� W k!M; � 7! �1M;

a convolution-invertible map ˆ WM˝3 ! k called associator, a coalgebra antimorphism
S WM!M and two functionals ˛; ˇ WM! k such that for all a; b; c; d 2M the follow-
ing equalities hold:

a1.b1c1/ˆ.a2; b2; c2/ D ˆ.a1; b1; c1/.a2b2/c2;

1Ma D a D a1M;

ˆ.a1; b1; c1d1/ˆ.a2b2; c2; d2/ D ˆ.b1; c1; d1/ˆ.a1; b2c2; d2/ˆ.a2; b3; c3/;

ˆ.a; 1M; b/ D ".a/".b/:

S.a1/˛.a2/a3 D ˛.a/1M; a1ˇ.a2/S.a3/ D ˇ.a/1M;

ˆ.a1;S.a3/; a5/ˇ.a2/˛.a4/ D ˆ
�1.S.a1/; a3;S.a5//˛.a2/ˇ.a4/ D ".a/:

Throughout we use the Sweedler sigma notation �.a/ D a1 ˝ a2 for the coproduct and
a1 ˝ a2 ˝ � � � ˝ anC1 for the result of the n-iterated application of � on a.

Example 2.2. Let G be a group and ˆ a normalized 3-cocycle on G. It is well known
that the group algebra kG is a Hopf algebra with �.g/ D g ˝ g, S.g/ D g�1 and ".g/ D 1
for any g 2 G. By extendingˆ trilinearly,ˆ W .kG/˝3 ! k becomes a convolution-invertible
map. Define two linear functions ˛; ˇ W kG ! k just by

˛.g/ WD ".g/; ˇ.g/ WD
1

ˆ.g; g�1; g/

for any g 2 G. Then kG together with these ˆ, ˛ and ˇ becomes a Majid algebra. In the
following, this resulting Majid algebra is denoted by .kG;ˆ/.

Recall that a Majid algebra M is said to be pointed if the underlying coalgebra is so.
Given a pointed Majid algebra .M; �; ";M; �;ˆ;S ; ˛; ˇ/, let ¹Mnºn�0 be its coradical filtra-
tion, and

grM DM0 ˚M1=M0 ˚M2=M1 ˚ � � �
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the corresponding coradically graded coalgebra. Then naturally grM inherits fromM a graded
Majid algebra structure. The corresponding graded associator grˆ satisfies grˆ. Na; Nb; Nc/ D 0
for all homogeneous Na; Nb; Nc 2 grM unless they all lie in M0. A similar condition holds for
gr˛ and grˇ. In particular, M0 is a Majid subalgebra and it turns out to be the Majid algebra
.kG; grˆ/ for G D G.M/, the set of group-like elements of M. We call a pointed Majid
algebraM graded ifM Š grM as Majid algebras. We refer to [21] for more details on pointed
Majid algebras.

Definition 2.3. Let .M; �; ";M; �;ˆ;S ; ˛; ˇ/ be a Majid algebra. A convolution-
invertible linear map

J WM˝M! k

is called a twisting (or gauge transformation) onM if

J.h; 1/ D ".h/ D J.1; h/

for all h 2M.

Given a Majid algebra M and a twisting J , one can construct a new Majid algebra MJ

as follows: MJ DM as a coalgebra and the multiplication ı onMJ is given by

a ı b WD J.a1; b1/a2b2J
�1.a3; b3/

for all a; b 2M. The associator ˆJ and the quasi-antipode .SJ ; ˛J ; ˇJ / are given as

ˆJ .a; b; c/ D J.b1; c1/J.a1; b2c2/ˆ.a2; b3; c3/J
�1.a3b4; c4/J

�1.a4; b5/;

SJ D S ; ˛J .a/ D J�1.S.a1/; a3/˛.a2/; ˇJ .a/ D J.a1;S.a3//ˇ.a2/

for all a; b; c 2M.

Definition 2.4. Two Majid algebras M1 and M2 are called twist equivalent if there is
a twisting J onM1 such thatMJ

1 ŠM2 as Majid algebras. DenoteM1 �M2 ifM1 is twist
equivalent to M2. We call a Majid algebra M genuine if it is not twist equivalent to a Hopf
algebra.

2.2. Yetter–Drinfeld modules over .kG; ˆ/. The definition of a Yetter–Drinfeld mod-
ule over an arbitrary Majid algebra was already given in [7, Definition 3.1] and we recall it as
follows.

Definition 2.5. LetM be a Majid algebra with associatorˆ. A left-left Yetter–Drinfeld
module overM is a triple .V; �V ;F/ such that

� .V; �V / is a left comodule ofM and we denote �V .v/ by v�1 ˝ v0 as usual;

� F WM ˝ V ! V is a k-linear map such that for all h; l 2M and v 2 V ,

.hl/ F v D
ˆ.h2; .l2 F v0/�1; l3/

ˆ.h1; l1; v�1/ˆ..h3 F .l2 F v0/0/�1; h4; l4/
.h3 F .l2 F v0/0/0;

1M F v D v;

.h1 F v/�1h2 ˝ .h1 F v/0 D h1v�1 ˝ .h2 F v0/:
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For our purpose, we want to describe a Yetter–Drinfeld module over Majid algebras of the
form .kG;ˆ/ with G a group. Assume that V is a left kG-comodule with comodule structure
map ıL W V ! kG ˝ V . Define

gV WD
®
v 2 V j ıL.v/ D g ˝ v

¯
and thus

V D
M
g2G

gV:

Here we call g the degree of the elements in gV and denote deg v D g for v 2 gV .

Definition 2.6. The left kG-comodule .V; ıL/ is a left-left Yetter–Drinfeld module over
the Majid algebra M D .kG;ˆ/ if there is a linear map F W G ˝ V ! V such that for all
e; f 2 G and v 2 gV

e F .f F v/ D
ˆ.e; f; g/ˆ.efgf �1e�1; e; f /

ˆ.e; fgf �1; f /
.ef / F v;

1M F v D v;

e F v 2 ege
�1

V :(2.1)

The category of all left-left Yetter–Drinfeld modules over .kG;ˆ/ is denoted by GGYDˆ.
Similarly, one can define left-right, right-left and right-right Yetter–Drinfeld modules over
.kG;ˆ/. As the familiar Hopf case, GGYDˆ is a braided tensor category. More precisely,
for any M;N 2 GGYDˆ, the structure maps of M ˝N as a left-left Yetter–Drinfeld module
are given by

ıL.mg ˝ nh/ WD gh˝mg ˝ nh;

x F .mg ˝ nh/ WD
ˆ.x; g; h/ˆ.xgx�1; xhx�1; x/

ˆ.xgx�1; x; h/
x Fmg ˝ x F nh

for all x; g; h 2 G and mg 2 gM , nh 2 hN . The associativity constraint a and the braiding c
of GGYDˆ are given respectively by

a..ue ˝ vf /˝ wg/ D ˆ.e; f; g/
�1ue ˝ .vf ˝ wg/;

c.ue ˝ vf / D e F vf ˝ ue

for all e; f; g 2 G, ue 2 eU , vf 2 f V , wg 2 gW and U; V;W 2 GGYDˆ.
If moreover G is an abelian group, then we can simplify the above definition further. For

this, define ê
g W G �G ! k�; .e; f / 7!

ˆ.g; e; f /ˆ.e; f; g/

ˆ.e; g; f /
;

where g 2 G. Direct computation shows that

ê
g 2 Z

2.G;k�/:
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Definition 2.7. Assume that G is an abelian group. A left kG-comodule V is a left-left
Yetter–Drinfeld module over .kG;ˆ/ if each gV is a projective G-representation with respect
to the 2-cocycle êg , namely the G-action F on gV satisfies

e F .f F v/ D ê
g.e; f /.ef / F v for all e; f 2 G; v 2 gV:

Remark 2.8. For an arbitrary group G (may be not abelian), we say that a left-left
Yetter–Drinfeld module V over .kG;ˆ/ is of diagonal type if every gV is a projective G-
representation and it is a direct sum of one-dimensional projective representations. In this
case, the union of a nonzero element of each one-dimensional projective representation forms
a basis of V , which is called a canonical basis of V in this paper. By equation (2.1), gV being
a projective representation will imply that g lies in the center of G. Therefore, if V is diagonal
then its support group, that is the subgroup generated by ¹g j gV ¤ 0º, must lie in the center
ofG and thus is an abelian group. We point out that not like the Hopf case, here even the whole
G being abelian can not guarantee that every V is diagonal. It turns out that all V 2 GGYDˆ

are diagonal if and only if ˆ is an abelian cocycle, see [28, 29], which is different from the
Eilenberg–MacLane abelian cocycle [10]. We will discuss these cocycles in detail in Section 3.

2.3. Bosonization for pointed Majid algebras. The theory of bosonization in a broader
context can be found in [27] in terms of braided diagrams. For our purpose, it is enough to fo-
cus on the situation of graded pointed Majid algebras. For the sake of completeness and later
applications, we record in the following some explicit concepts, notations and results without
proof.

In the rest of the paper, we always assume that

M D
M
i2N

Mi

is a coradically graded connected pointed Majid algebra with unit 1. So M0 D .kG;ˆ/ for
some group G together with a 3-cocycle ˆ on G. Let � WM!M0 be the canonical projec-
tion. ThenM is a kG-bicomodule naturally via

ıL WD .� ˝ id/�; ıR WD .id˝ �/�:

Thus there is a G-bigrading onM, that is,

M D
M
g;h2G

gMh;

where
gMh

D
®
m 2M j ıL.m/ D g ˝m; ıR.m/ D m˝ h

¯
:

As stated in the last paragraph of the introduction, we only deal with homogeneous el-
ements with respect to this G-bigrading in this subsection. For example, whenever we write
�.X/ D X1 ˝X2, all X;X1; X2 are assumed homogeneous, and for any capital X 2 gMh,
we use its lowercase x to denote gh�1.

Define the coinvariant subalgebra ofM by

R WD
®
m 2M j .id˝ �/�.m/ D m˝ 1

¯
:
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Clearly 1 2 R. There is a .kG;ˆ/-action onR via

f FX WD
ˆ.fg; f �1; f /

ˆ.f; f �1; f /
.f �X/ � f �1

for all f; g 2 G and X 2 gR. Here � is the multiplication inM. Then .R; ıL;B/ is a left-left
Yetter–Drinfeld module over .kG;ˆ/.

Moreover, there are several natural operations onR inherited fromM as follows:

M W R˝R! R; .X; Y / 7! XY WD X � Y;

u W k! R; � 7! �1;

�R W R! R˝R; X 7! ˆ.x1; x2; x
�1
2 /X1 � x

�1
2 ˝X2;

"R W R! k; "R WD "jR;

SR W R! R; X 7!
1

ˆ.x; x�1; x/
x � S.X/:

Then it is routine to verify that .R;M; u;�R; "R;SR/ is a Hopf algebra in GGYDˆ.
Conversely, let H be a Hopf algebra in GGYDˆ. Since H is a left G-comodule, there is a

G-grading on H :
H D

M
x2G

xH;

where xH D ¹X 2 H j ıL.X/ D x ˝Xº. As before, we only need to deal with G-homoge-
neous elements. As a convention, homogeneous elements in H are denoted by capital letters,
say X; Y;Z; : : : , and the associated degrees are denoted by their lower cases, say x; y; z; : : : .

For our purpose, we also assume that H isN-graded with H0 D k. If X 2 Hn, then we
say that X has length n. Moreover, we assume that both gradings are compatible in the sense
that

H D
M
g2G

gH D
M
g2G

M
n2N

gHn:

For example, the Hopf algebra R in G
GYDˆ considered above satisfies these assumptions as

R D
L
i2NRi is coradically graded. In this case, we call dimR1 the rank of R and M. For

any X 2 H , we write its comultiplication as

�H .X/ D X.1/ ˝X.2/:

Lemma 2.9. Keep the assumptions on H as above. Define on H ˝ kG a product by

.X ˝ g/.Y ˝ h/ D
ˆ.xg; y; h/ˆ.x; y; g/

ˆ.x; g; y/ˆ.xy; g; h/
X.g F Y /˝ gh;

and a coproduct by

�.X ˝ g/ D ˆ.x.1/; x.2/; g/
�1.X.1/ ˝ x.2/g/˝ .X.2/ ˝ g/:

Then H ˝ kG becomes a graded Majid algebra with a quasi-antipode .S ; ˛; ˇ/ given by

S.X ˝ g/ D
ˆ.g�1; g; g�1/

ˆ.x�1g�1; xg; g�1/ˆ.x; g; g�1/
.1˝ x�1g�1/.SH .X/˝ 1/;

˛.1˝ g/ D 1; ˛.X ˝ g/ D 0;

ˇ.1˝ g/ D ˆ.g; g�1; g/�1; ˇ.X ˝ g/ D 0;

where g; h 2 G and X; Y are homogeneous elements of length � 1.
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In the following, by H#kG we denote the resulting Majid algebra defined on H ˝ kG.

Proposition 2.10. Let M and R be as before, and let R#kG be the Majid algebra as
defined in the previous proposition. Then the map

F W R#kG !M; X ˝ g 7! Xg

is an isomorphism of Majid algebras.

2.4. Nichols algebras in G
G

YDˆ. Nichols algebras can be defined by various equiva-
lent ways, see for example [3]. Here we adopt the defining method in terms of the universal
property. Roughly, Nichols algebras are the analogue of the usual symmetric algebras in more
general braided tensor categories.

Let V be a nonzero object in GGYDˆ. By Tˆ.V / we denote the tensor algebra in GGYDˆ

generated freely by V . It is clear that Tˆ.V / is isomorphic to
L
n�0 V

˝En as a linear space,
where

V ˝En WD .� � � ..„ƒ‚…
n�1

V ˝ V /˝ V / � � � ˝ V /:

This induces a natural N-graded structure on Tˆ.V /. Define a comultiplication on Tˆ.V / by
�.X/ D X ˝ 1C 1˝X for all X 2 V , a counit by ".X/ D 0, and an antipode by
S.X/ D �X . These provide a graded Hopf algebra structure on Tˆ.V / in the braided ten-
sor category GGYDˆ.

Definition 2.11. The Nichols algebra B.V / of V is defined to be the quotient Hopf
algebra Tˆ.V /=I in G

GYDˆ, where I is the unique maximal graded Hopf ideal generated by
homogeneous elements of degree greater than or equal to 2. Moreover, we call a Nichols
algebra B.V / diagonal if V is a diagonal Yetter–Drinfeld module in GGYDˆ.

To stress that our Nichols algebras may be non-associative in some occasions, we will
call an associative Nichols algebra, e.g. B.V / 2 GGYD , a usual Nichols algebra. The twist-
ing process for Majid algebras can be transferred to Nichols algebras directly. In fact, let
.V;F; ıL/ 2

G
GYDˆ, and let J be a 2-cochain of G. Then we can define a new action FJ of G

over V by

g FJ X D
J.g; x/

J.x; g/
g FX

for X 2 V and g 2 G. We denote .V;FJ ; ıL/ by V J and by definition we have

V J 2 GGYDˆ�à.J /:

Moreover, there is a tensor equivalence .FJ ; '0; '2/ W GGYDˆ
! G

GYDˆ�à.J / which takes V
to V J and

'2.U; V / W .U ˝ V /
J
! U J ˝ V J ; Y ˝Z 7! J.y; z/�1Y ˝Z

for Y 2 U , Z 2 V .
Let B.V / be a usual Nichols algebra in GGYD . It is clear that B.V /J is a Hopf algebra

in GGYDàJ with multiplication ı determined by

X ı Y D J.x; y/XY
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for all homogeneous elements X; Y 2 B.V /, here x D degX , y D degY . Using the same
terminology as for Majid algebras or quasi-Hopf algebras, we say that B.V / and B.V /J are
twist equivalent. The following result is obvious, but important for our exposition.

Lemma 2.12. The twisting B.V /J of B.V / is a Nichols algebra in G
GYDàJ and

B.V /J Š B.V J /.

2.5. Arithmetic root systems and generalized Dynkin diagrams. Arithmetic root
systems are invariants of Nichols algebras of diagonal type with certain finiteness property.
A complete classification of arithmetic root systems was given by Heckenberger [20]. This is
a crucial ingredient for the classification program of finite-dimensional pointed Hopf algebras,
and turns out to be equally important in the broader situation of pointed Majid algebras.

Suppose B.V / is a usual Nichols algebra of diagonal type in GGYD . Let ¹Xi j 1 � i � nº
be a canonical basis of V with ıL.Xi / D hi ˝Xi . The structure constants of B.V / are
¹qij j 1 � i; j � nº such that hi FXj D qijXj . LetE D ¹ei j 1 � i � nº be a canonical basis
of Zn, and � a bicharacter of Zn determined by �.ei ; ej / D qij . As defined in [17, Section 3],
4C.B.V // is the set of degrees of the (restricted) Poincaré–Birkhoff–Witt generators counted
with multiplicities, and

a
.B.V // WD

aC
.B.V // [ �

aC
.B.V //;

which is called the root system of B.V /. Moreover, the triple .
a
D
a
.B.V //; �;E/ is called

an arithmetic root system of B.V / if the corresponding Weyl groupoid W�;E is full and finite,
see [19, Sections 2 and 3]. In this case, we denote this arithmetic root system by

a
.B.V //�;E

for brevity. If there is another arithmetic root system
a
�0;E 0 , and an isomorphism � W Zn ! Zn

such that

�.E/ D E 0; �0.�.e/; �.e// D �.e; e/;

�0.�.e1/; �.e2//�
0.�.e2/; �.e1// D �.e1; e2/�.e2; e1/;

then we say that
a
�;E and

a
�0;E 0 are twist equivalent.

A generalized Dynkin diagram is an invariant of arithmetic root systems, and it can de-
termine arithmetic root systems up to twist equivalence.

Definition 2.13. The generalized Dynkin diagram of an arithmetic root system
a
�;E is

a non-directed graph D�;E with the following properties:

(1) There is a bijective map � from I D ¹1; 2; : : : ; nº to the set of vertices of D�;E .

(2) For all 1 � i � n, the vertex �.i/ is labelled by qi i .

(3) For all 1 � i; j � n, the number nij of edges between �.i/ and �.j / is either 0 or 1.
If i D j or qij qj i D 1 then nij D 0, otherwise nij D 1 and the edge is labelled byfqij D qij qj i for 1 � i < j � n.

An arithmetic root system is called connected provided the corresponding generalized
Dynkin diagram D�;E is connected. All the connected arithmetic root systems are classified
and the corresponding generalized Dynkin diagrams are listed in [18, 20].
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3. Normalized 3-cocycles over finite abelian groups

The aim of this section is threefold: Firstly, we will give a unified formula for 3-cocycles
over a finite abelian group. Secondly, we want to develop a method to determine when a 3-
cocycle is a coboundary. At last, we want to discuss the “resolution” problem, i.e., for every
3-cocycle ˆ on Zm1 � � � � � Zmn , is there a bigger abelian group G together with a group
epimorphism � W G ! Zm1 � � � � � Zmn such that the pull-back ��.ˆ/ is a coboundary onG?
By this discussion, we find that there are essential differences between different 3-cocycles and
we get the definition of abelian cocycles again, which was already discussed by Ng [29] and
Mason–Ng [28].

3.1. A unified formula for 3-cocycles. LetG be a group and .B�; à�/ its bar resolution.
By applying HomZG.�;k�/, we get a complex .B�� ; à�� /, where k� D k n ¹0º is a trivial G-
module.

Now let G be a finite abelian group. Thus G Š Zm1 � � � � � Zmk . For every Zmi , we fix
a generator gi throughout this paper for 1 � i � k. It is known, see e.g. [30, Section 6.2], that
the following periodic sequence is a projective resolution for the trivial Zmi -module Z:

(3.1) � � � �! ZZmi
Ti
��! ZZmi

Ni
��! ZZmi

Ti
��! ZZmi

"i
��! Z �! 0;

where Ti D gi � 1, Ni D
Pmi�1
jD0 g

j
i and "i is the augmentation map.

We want to form the tensor product of these periodic resolutions and get a resolution for
the group G D Zm1 � � � � � Zmk . For the reader’s convenience, we take the case k D 2 as an
example to explain our construction at first and then provide the general form. In order to keep
consistency with the notations used in [30, (2.7.1)], we rewrite the sequences (3.1) for i D 1; 2
in the following forms:

� � � �! P3
T1
��! P2

N1
���! P1

T1
��! P0

"1
��! Z �! 0;

� � � �! Q3
T2
��! Q2

N2
���! Q1

T2
��! Q0

"2
��! Z �! 0:

We use P� ! Z! 0 andQ� ! Z! 0 to denote them for short. Now we consider the tensor
product over Z and for any nonnegative integers i; j we have

Pi ˝Z Qj D ZZm1 ˝Z ZZm2 Š Z.Zm1 � Zm2/ D ZG

which is a free ZG-module of rank one. In order to remember the positions of Pi ˝Z Qj in
the double complex D�� WD P� ˝Z Q�, we denote this free ZG-module by .ZG/‰.i; j /, i.e.,

(3.2) Pi ˝Z Qj D .ZG/‰.i; j /:

Next we form the total complex Tot.D��/ of P� ˝Z Q� and want to give its differentials d
clearly. By definition, we know that the horizontal differential of Pi ˝Z Qj is just d1 ˝ 1
where d1 is the differential of P� and the vertical differential is .�1/i1˝ d2 where d2 is the
differential of Q�. Therefore,

d.Pi ˝Z Qj / D d
1.Pi /˝Z Qj C .�1/

iPi ˝Z d
2.Qj /:
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Using the convention of (3.2), we can describe the differential more explicitly. To this aim,
define two morphisms d1; d2 of ZG-modules through

d1.‰.i; j // D

8̂<̂
:
0 if i D 0;

N1‰.i � 1; j / if 0 ¤ i even;

T1‰.i � 1; j / if i odd;

d2.‰.i; j // D

8̂<̂
:
0 if j D 0;

.�1/iN2‰.i; j � 1/ if 0 ¤ j even;

.�1/iT2‰.i; j � 1/ if j odd:

It is not hard to see that d D d1 C d2. In one word, the total complex Tot.D��/ can be de-
scribed as follows:

Tot.D��/n D
M
iCjDn

.ZG/‰.i; j /; d D d1 C d2:

In general, let K� be the following complex of projective (in fact, free) ZG-modules.
For each sequence a1; : : : ; ak of nonnegative integers, let ‰.a1; : : : ; ak/ be a free generator in
degree a1 C � � � C ak . Define

Km WD
M

a1C���CakDm

.ZG/‰.a1; : : : ; ak/;

and

di .‰.a1; : : : ; ak// D

8̂<̂
:
0 if ai D 0;

.�1/
P
l<i alNi‰.a1; : : : ; ai � 1; : : : ; ak/ if 0 ¤ ai even;

.�1/
P
l<i alTi‰.a1; : : : ; ai � 1; : : : ; ak/ if ai odd;

for 1 � i � k. The differential d is defined to be d1 C � � � C dk . Now we can form a complex

(3.3) K�
"
�! Z �! 0;

where " denotes the augmentation map.

Lemma 3.1. The complex (3.3) is a free resolution of the trivial ZG-module Z.

Proof. Due to our construction, .K�; d / is exactly the tensor product of the complexes
(3.1). Therefore by the Künneth formula for complexes [30, (3.6.3)] we know thatK� is exact.
Thus the only task is to show that Ker " D Im d jK1 , but this is clear.

For convenience, we fix the following notations.
For any 1 � r � k, define ‰r WD ‰.0; : : : ; 1; : : : ; 0/ where 1 lies in the r-th position.

For any 1 � r � s � k, define ‰r;s WD ‰.0; : : : ; 1; : : : ; 1; : : : ; 0/ where 1 lies in both the r-th
and the s-th position if r < s and ‰r;r WD ‰.0; : : : ; 2; : : : ; 0/ where 2 lies in the r-th position.
Similarly, one can define ‰r;s;t ; ‰r;s;s; ‰r;r;s and ‰r;r;r for 1 � r � k, 1 � r < s � k and
1 � r < s < t � k.
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212 Huang et al., Finite quasi-quantum groups of diagonal type

One could even define ‰i;j;s;t , ‰i;i;j;s , ‰i;j;s;s , ‰i;j;j;s , ‰i;i;j;j , ‰i;i;i;j , ‰i;j;j;j , and
‰i;i;i;i for 1 � i � k, 1 � i < j � k, 1 � i < j < s � k and 1 � i < j < s < t � k, re-
spectively. Now it is clear that any cochain f 2 HomZG.K3; k�/ is uniquely determined by
its values on‰r;s;t ,‰r;s;s ,‰r;r;s and‰r;r;r for 1� r � k, 1� r < s � k and 1� r < s < t � k.
For such numbers, we let

fr;s;t D f .‰r;s;t /; fr;s;s D f .‰r;s;s/; fr;r;s D f .‰r;r;s/; fr;r;r D f .‰r;r;r/:

Lemma 3.2. The 3-cochain f 2 HomZG.K3;k�/ is a cocycle if and only if for all
1 � r � k, 1 � r < s � k and 1 � r < s < t � k,

(3.4) f mrr;r;r D 1; f mrr;s;sf
ms
r;r;s D 1; f

mr
r;s;t D f

ms
r;s;t D f

mt
r;s;t D 1:

Proof. The proof follows by direct computations. By definition, the cochain f is a
3-cocycle if and only if 1 D d�.f /.‰i;j;s;t / D f .d.‰i;j;s;t // for all 1 � i � j � s � t � k.
For any a 2 k�, it is clear that Ti � a D 1 since k� is considered as a trivial G-module. There-
fore we only need to consider the condition 1 D d�.f /.‰i;j;s;t / in the cases: i D j D s D t ,
i D j < s < t , i < j D s < t , i < j < s D t and i D j < s D t , respectively.

In case i D j D s D t , we have

1 D d�.f /.‰i;i;i;i / D f .Ni‰i;i;i / D Ni � fi;i;i D f
mi
i;i;i :

Similarly, we have the following:

f
mi
i;s;t D 1 if i D j < s < t;

f
�mj
i;j;t D 1 if i < j D s < t;

f
ms
i;j;s D 1 if i < j < s D t;

f
mi
i;s;sf

ms
i;i;s D 1 if i D j < s D t:

Now it is easy to see that these relations are the same as in equation (3.4).

Lemma 3.3. The 3-cochain f 2 HomZG.K3;k�/ is a coboundary if and only if for all
1 � i < j � k, there are gi;j 2 k� such that

(3.5) fi;i;j D g
mi
i;j ; fi;j;j D g

�mj
i;j ; and fl;l;l D 1; fr;s;t D 1;

for 1 � l � k and 1 � r < s < t � k.

Proof. By definition, f is a coboundary if and only if f D d�.g/ for some 2-cochain
g 2 HomZG.K2;k�/. For any 1 � i � j � k, let gi;j WD g.‰i;j /. Since Tl � a D 1 for any
a 2 k�, we have d�.g/.‰r;s;t / D d�.g/.‰l;l;l/ D 1 for 1 � r < s < t � k and 1 � l � k.
Now for all 1 � i < j � k,

fi;i;j D d
�.g/.‰i;i;j / D g.Ni‰i;j C Tj‰i;i / D g

mi
i;j ;

fi;j;j D d
�.g/.‰i;j;j / D g.Ti‰j;j �Nj‰i;j / D g

�mj
i;j :

For a set of natural numbers s1; : : : ; st , by .s1; : : : ; st / we denote their greatest common
divisor.
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Proposition 3.4. One has

H3.G;k�/ Š
nY
iD1

Zmi �

nY
1�i<j�n

Z.mi ;mj / �

nY
1�i<j<k�n

Z.mi ;mj ;mk/:

Proof. By Lemma 3.2 and Lemma 3.3, for a 3-cocycle f one can assume that fl;l;l
is an ml -th root of unity and fi;j;k is an .mi ; mj ; mk/-th root of unity for all 1 � l � n and
1 � i < j < k � n. By Lemma 3.3, one can take

gi;j D f
�1=mj
i;j;j

and thus can assume that fi;j;j D 1 and gmji;j D 1 for all 1 � i < j � n. By f mii;j;jf
mj
i;i;j D 1,

one has f mji;i;j D 1. Therefore, H3.G;k�/ must be a quotient group of

nY
iD1

Zmi �

nY
1�i<j�n

Zmj �

nY
1�i<j<k�n

Z.mi ;mj ;mk/:

Using the second relation in (3.5), one may even assume that f mii;i;j D 1. So the proposition is
proved.

For any natural numberm, once and for all we fix �m to be a primitivem-th root of unity.

Corollary 3.5. The set®
f 2 HomZG.K3;k�/ j fl;l;l D �

al
ml
; fi;i;j D �

aij
mj ; fi;j;j D 1; fr;s;t D �

arst
.mr ;ms ;mt /

for 1 � l � n; 1 � i < j � n; 1 � r < s < t � n; and

0 � al < ml ; 0 � aij < .mi ; mj /; 0 � arst < .mr ; ms; mt /
¯

is a complete set of representatives of 3-cocycles of the complex .K�� ; d
�
� /.

Next, we want to construct a chain map. We need some more notations to present the
chain map. For any positive integers s and t , let Œ s

t
� denote the integer part of s

t
and let s0t

denote the remainder of division of s by t . When there is no risk of confusion, we drop the
subscript and write simply s0. The following observation is useful in later arguments.

Lemma 3.6. For any three natural numbers s; t; r , one hashs C t 0r
r

i
D

hs C t
r

i
�

h t
r

i
:

Proof. We calculatehs C t 0r
r

i
D

hs C t � Œ t
r
�r

r

i
D

hs C t
r

i
�

h t
r

i
:

Now we are ready to give a chain map, up to the third term for our purpose, from the
normalized bar resolution .B�; à�/ to the tensor resolution .K�; d�/. Recall that Bm is the free
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ZG-module on the set of all symbols Œh1; : : : ; hm� with hi 2 G andm � 1. In casem D 0, the
symbol Œ � denotes 1 2 ZG and the map à0 D � W B0 ! Z sends Œ � to 1.

We define the following three morphisms of ZG-modules:

F1 W B1 ! K1; Œg
i1
1 � � �g

in
n � 7!

nX
sD1

is�1X
˛sD0

g
i1
1 � � �g

is�1
s�1 g

˛s
s ‰s;

F2 W B2 ! K2;

Œg
i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n � 7!

nX
sD1

g
i1Cj1
1 � � �g

is�1Cjs�1
s�1

h is C js
ms

i
‰s;s

�

X
1�s<t�n

js�1X
˛sD0

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

j1
1 � � �g

js�1
s�1 g

˛s
s g

ˇt
t ‰s;t ;

F3 W B3 ! K3;

Œg
i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n �

7!

nX
rD1

hjr C kr
mr

i
g
j1Ck1
1 � � �g

jr�1Ckr�1
r�1

ir�1X
ˇrD0

g
i1
1 � � �g

ir�1
r�1 g

ˇr
r ‰r;r;r

C

X
1�r<t�n

hjr C kr
mr

i
g
j1Ck1
1 � � �g

jr�1Ckr�1
r�1

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t ‰r;r;t

C

X
1�r<t�n

h it C jt
mt

i
g
i1Cj1
1 � � �g

it�1Cjt�1
t�1

kr�1X
rD0

g
k1
1 � � �g

kr�1
r�1 g

r
r ‰r;t;t

�

X
1�r<s<t�n

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t

js�1X
˛sD0

g
j1
1 � � �g

js�1
s�1 g

˛s
s

kr�1X
rD0

g
k1
1 � � �g

kr�1
r�1 g

r
r ‰r;s;t

for 0 � il ; jl ; kl < ml and 1 � l � n.

Proposition 3.7. The following diagram is commutative:

� � � // B3
à3 //

F3
��

B2
à2 //

F2
��

B1
à1 //

F1
��

B0 // Z // 0

� � � // K3
d // K2

d // K1
d // K0 // Z // 0:

Proof. The proof is by direct but very complicated computation. The essence of the
proposition lies in figuring out the morphisms F1; F2 and F3 in the first place. We hope that
the proof may shed some light on the construction of them. The proof is naturally divided into
three parts.

Claim 1: dF1 D à1. Take any generator Œgi11 � � �g
in
n � 2 B1. Then

à1.Œgi11 � � �g
in
n �/ D .g

i1
1 � � �g

in
n � 1/‰.0; : : : ; 0/

Brought to you by | University of Science and Technology of China
Authenticated

Download Date | 3/1/20 7:40 PM



Huang et al., Finite quasi-quantum groups of diagonal type 215

and

dF1.Œg
i1
1 � � �g

in
n �/ D d

� nX
sD1

is�1X
˛sD0

g
i1
1 � � �g

is�1
s�1 g

˛s
s ‰s

�

D

nX
sD1

is�1X
˛sD0

g
i1
1 � � �g

is�1
s�1 g

˛s
s .gs � 1/‰.0; : : : ; 0/

D

nX
sD1

g
i1
1 � � �g

is�1
s�1 .g

is
s � 1/‰.0; : : : ; 0/

D .g
i1
1 � � �g

in
n � 1/‰.0; : : : ; 0/:

Claim 2: dF2 D F1à2. For any generator Œgi11 � � �g
in
n ; g

j1
1 � � �g

jn
n �, we have

F1à2.Œgi11 � � �g
in
n ; g

j1
1 � � �g

jn
n �/

D F1
�
g
i1
1 � � �g

in
n Œg

j1
1 � � �g

jn
n � � Œg

i1Cj1
1 � � �ginCjnn �C Œg

i1
1 � � �g

in
n �
�

D g
i1
1 � � �g

in
n

nX
sD1

js�1X
˛sD0

g
j1
1 � � �g

js�1
s�1 g

˛s
s ‰s

�

nX
sD1

.isCjs/
0�1X

˛sD0

g
i1Cj1
1 � � �g

is�1Cjs�1
s�1 g˛ss ‰s

C

nX
sD1

is�1X
˛sD0

g
i1
1 � � �g

is�1
s�1 g

˛s
s ‰s:

Fix any s, the coefficient of ‰s is

g
i1
1 � � �g

in
n

js�1X
˛sD0

g
j1
1 � � �g

js�1
s�1 g

˛s
s(3.6)

� g
i1Cj1
1 � � �g

is�1Cjs�1
s�1

� isCjs�1X
˛sD0

g˛ss �
h is C js

ms

i
Ns

�

C

is�1X
˛sD0

g
i1
1 � � �g

is�1
s�1 g

˛s
s :

Now consider dF2. We have

dF2.Œg
i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n �/

D d

� nX
sD1

g
i1Cj1
1 � � �g

is�1Cjs�1
s�1

h is C js
ms

i
‰s;s

�

� d

� X
1�s<t�n

js�1X
˛sD0

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

j1
1 � � �g

js�1
s�1 g

˛s
s g

ˇt
t ‰s;t

�
:
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In this expression, the coefficient of ‰s is

g
i1Cj1
1 � � �g

is�1Cjs�1
s�1

h is C js
ms

i
Ns

�

X
1�t<s

is�1X
ˇsD0

g
i1
1 � � �g

is�1
s�1 g

j1
1 � � �g

jt�1
t�1 .g

jt
t � 1/g

ˇs
s

C

X
s<t�n

js�1X
˛sD0

g
i1
1 � � �g

it�1
t�1 g

j1
1 � � �g

js�1
s�1 g

˛s
s .g

it
t � 1/

D g
i1Cj1
1 � � �g

is�1Cjs�1
s�1

h is C js
ms

i
Ns

�

is�1X
ˇsD0

g
i1
1 � � �g

is�1
s�1 .g

j1
1 � � �g

js�1
s�1 � 1/g

ˇs
s

C

js�1X
˛sD0

.g
i1
1 � � �g

in
n � g

i1
1 � � �g

is
s /g

j1
1 � � �g

js�1
s�1 g

˛s
s

D g
i1Cj1
1 � � �g

is�1Cjs�1
s�1

h is C js
ms

i
Ns

�

isCjs�1X
ˇsD0

g
i1Cj1
1 � � �g

is�1Cjs�1
s�1 gˇss

C

js�1X
˛sD0

g
i1
1 � � �g

in
n g

j1
1 � � �g

js�1
s�1 g

˛s
s C

is�1X
ˇsD0

g
i1
1 � � �g

is�1
s�1 g

ˇs
s ;

which is clearly identical with (3.6). So we have dF2 D F1à2.

Claim 3: dF3 D F2à3. Similarly, for any generator Œgi11 � � �g
in
n ; g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n �,

we have

F2à3.Œgi11 � � �g
in
n ; g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n �/

D F2
�
g
i1
1 � � �g

in
n Œg

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n � � Œg

i1Cj1
1 � � �ginCjnn ; g

k1
1 � � �g

kn
n �
�

C F2
�
Œg
i1
1 � � �g

in
n ; g

j1Ck1
1 � � �gjnCknn � � Œg

i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n �
�

D g
i1
1 � � �g

in
n

nX
sD1

g
j1Ck1
1 � � �g

js�1Cks�1
s�1

hjs C ks
ms

i
‰s;s

� g
i1
1 � � �g

in
n

X
1�s<t�n

ks�1X
˛sD0

jt�1X
ˇtD0

g
j1
1 � � �g

jt�1
t�1 g

k1
1 � � �g

ks�1
s�1 g

˛s
s g

ˇt
t ‰s;t

�

nX
sD1

g
i1Cj1Ck1
1 � � �g

is�1Cjs�1Cks�1
s�1

h.is C js/0 C ks
ms

i
‰s;s

C

X
1�s<t�n

ks�1X
˛sD0

.itCjt /
0�1X

ˇtD0

g
i1Cj1
1 � � �g

it�1Cjt�1
t�1 g

k1
1 � � �g

ks�1
s�1 g

˛s
s g

ˇt
t ‰s;t
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C

nX
sD1

g
i1Cj1Ck1
1 � � �g

is�1Cjs�1Cks�1
s�1

h is C .js C ks/0
ms

i
‰s;s

�

X
1�s<t�n

.jsCks/
0�1X

˛sD0

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

j1Ck1
1 � � �g

js�1Cks�1
s�1 g˛ss g

ˇt
t ‰s;t

�

nX
sD1

g
i1Cj1
1 � � �g

is�1Cjs�1
s�1

h is C js
ms

i
‰s;s

C

X
1�s<t�n

js�1X
˛sD0

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

j1
1 � � �g

js�1
s�1 g

˛s
s g

ˇt
t ‰s;t :

Note that in .is C js/0 we drop the subscriptms . In the previous expression, for any 1 � s � n,
the coefficient of ‰s;s is

g
i1
1 � � �g

in
n g

j1Ck1
1 � � �g

js�1Cks�1
s�1

hjs C ks
ms

i
(3.7)

C g
i1Cj1Ck1
1 � � �g

is�1Cjs�1Cks�1
s�1

�h is C js
ms

i
�

hjs C ks
ms

i�
� g

i1Cj1
1 � � �g

is�1Cjs�1
s�1

h is C js
ms

i
;

where Lemma 3.6 is applied. For any 1 � s < t � n, the coefficient of ‰s;t is

� g
i1
1 � � �g

in
n

ks�1X
˛sD0

jt�1X
ˇtD0

g
j1
1 � � �g

jt�1
t�1 g

k1
1 � � �g

ks�1
s�1 g

˛s
s g

ˇt
t(3.8)

C

ks�1X
˛sD0

g
i1Cj1
1 � � �g

it�1Cjt�1
t�1 g

k1
1 � � �g

ks�1
s�1 g

˛s
s

� itCjt�1X
ˇtD0

g
ˇt
t �

h it C jt
mt

i
Nt

�

�

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t g

j1Ck1
1 � � �g

js�1Cks�1
s�1

� jsCks�1X
˛sD0

g˛ss �
hjs C ks

ms

i
Ns

�

C

js�1X
˛sD0

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

j1
1 � � �g

js�1
s�1 g

˛s
s g

ˇt
t :

For dF3, we have

dF3.Œg
i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n �/

D d

� nX
rD1

hjr C kr
mr

i
g
j1Ck1
1 � � �g

jr�1Ckr�1
r�1

ir�1X
ˇrD0

g
i1
1 � � �g

ir�1
r�1 g

ˇr
r ‰r;r;r

�

C d

� X
1�r<t�n

hjr C kr
mr

i
g
j1Ck1
1 � � �g

jr�1Ckr�1
r�1

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t ‰r;r;t

�

C d

� X
1�r<t�n

h it C jt
mt

i
g
i1Cj1
1 � � �g

it�1Cjt�1
t�1

kr�1X
rD0

g
k1
1 � � �g

kr�1
r�1 g

r
r ‰r;t;t

�
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� d

� X
1�r<s<t�n

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t

js�1X
˛sD0

g
j1
1 � � �g

js�1
s�1 g

˛s
s

�

kr�1X
rD0

g
k1
1 � � �g

kr�1
r�1 g

r
r ‰r;s;t

�
:

Note that the coefficient of ‰s;s ishjs C ks
ms

i
g
j1Ck1
1 � � �g

js�1Cks�1
s�1 g

i1
1 � � �g

is�1
s�1 .g

is
s � 1/

C

X
s<t�n

hjs C ks
ms

i
g
j1Ck1
1 � � �g

js�1Cks�1
r�1 g

i1
1 � � �g

it�1
t�1 .g

it
t � 1/

C

X
1�r<s

h is C js
ms

i
g
i1Cj1
1 � � �g

is�1Cjs�1
s�1 g

k1
1 � � �g

kr�1
r�1 .g

kr
r � 1/

D

hjs C ks
ms

i
g
j1Ck1
1 � � �g

js�1Cks�1
s�1 g

i1
1 � � �g

is�1
s�1 .g

is
s � 1/

C

hjs C ks
ms

i
g
j1Ck1
1 � � �g

js�1Cks�1
r�1 .g

i1
1 � � �g

in
n � g

i1
1 � � �g

is
s /

C

h is C js
ms

i
g
i1Cj1
1 � � �g

is�1Cjs�1
s�1 .g

k1
1 � � �g

ks�1
s�1 � 1/;

which clearly is equal to (3.7).
Finally, we consider the coefficient of ‰s;t for 1 � s < t � n, which is

hjs C ks
ms

i
Nsg

j1Ck1
1 � � �g

js�1Cks�1
s�1

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t

C

h it C jt
mt

i
Ntg

i1Cj1
1 � � �g

it�1Cjt�1
t�1

ks�1X
sD0

g
k1
1 � � �g

ks�1
s�1 g

s
s

�

X
1�r<s<t

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t

js�1X
˛sD0

g
j1
1 � � �g

js�1
s�1 g

˛s
s g

k1
1 � � �g

kr�1
r�1 .g

kr
r � 1/

C

X
s<r<t

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t g

j1
1 � � �g

jr�1
r�1 .g

jr
r � 1/

ks�1X
sD0

g
k1
1 � � �g

ks�1
s�1 g

s
s

�

X
s<t<r

g
i1
1 � � �g

ir�1
r�1 .g

ir
r � 1/

jt�1X
˛tD0

g
j1
1 � � �g

jt�1
t�1 g

˛t
t

ks�1X
sD0

g
k1
1 � � �g

ks�1
s�1 g

s
s

D

hjs C ks
ms

i
Nsg

j1Ck1
1 � � �g

js�1Cks�1
s�1

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t

C

h it C jt
mt

i
Ntg

i1Cj1
1 � � �g

it�1Cjt�1
t�1

ks�1X
sD0

g
k1
1 � � �g

ks�1
s�1 g

s
s
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�

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t

js�1X
˛sD0

g
j1
1 � � �g

js�1
s�1 g

˛s
s .g

k1
1 � � �g

ks�1
s�1 � 1/

C

it�1X
ˇtD0

g
i1
1 � � �g

it�1
t�1 g

ˇt
t .g

j1
1 � � �g

jt�1
t�1 � g

j1
1 � � �g

js
s /

ks�1X
sD0

g
k1
1 � � �g

ks�1
s�1 g

s
s

� .g
i1
1 � � �g

in
n � g

i1
1 � � �g

it
t /

jt�1X
˛tD0

g
j1
1 � � �g

jt�1
t�1 g

˛t
t

ks�1X
sD0

g
k1
1 � � �g

ks�1
s�1 g

s
s :

It is not hard to see that this is equal to (3.8). Therefore, dF3 D F2à3.
The proof is completed.

Now we are able to accomplish the main task with a help of the results obtained above.
Define A to be the set of all sequences like

(3.9) .a1; : : : ; al ; : : : ; an; a12; : : : ; aij ; : : : ; an�1;n; a123; : : : ; arst ; : : : ; an�2;n�1;n/

such that 0 � al < ml , 0 � aij < .mi ; mj / and 0 � arst < .mr ; ms; mt / for 1 � l � n,
1 � i < j � n, 1 � r < s < t � n where aij and arst are ordered by the lexicographic
order. In the following, the sequence (3.9) is denoted by a for short.

For any a 2 A, define a ZG-module morphism:

ˆa W B3 ! k�;(3.10)

Œg
i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n �

7!

nY
lD1

�
al il Œ

jlCkl
ml

�

ml

Y
1�s<t�n

�
ast it Œ

jsCks
ms

�

mt

Y
1�r<s<t�n

�
�arstkrjsit
.mr ;ms ;mt /

:

Proposition 3.8. Suppose that k is an algebraically closed field of characteristic zero
and G D Zm1 � � � � � Zmn . Then ¹ˆa j a 2 Aº is a complete set of representatives of normal-
ized 3-cocycles on G.

Proof. This is a direct consequence of Corollary 3.5 and the definition of the map F3
given in Proposition 3.7.

3.2. 3-coboundary. Later on, we will encounter the following problem: Given a 3-co-
cycle of the complex .B�� ; à�� /, we have to determine whether it is a 3-coboundary or not. In
this subsection, we want to solve this problem in case G is a finite abelian group. In fact,
Lemma 3.3 already provides us an easy way. For the bar resolution, it is sufficient to give a
chain map from .K�; d�/ to .B�; à�/, which is a kind of inverse of the chain map defined in the
previous subsection and thus becomes much simpler. We use the following three morphisms
of ZG-modules defined in [26, Section 2]:

F1 W K1 ! B1; ‰r 7! Œgr �;

F2 W K2 ! B2; ‰r;s 7! Œgr ; gs� � Œgs; gr �; ‰r;r 7!

mr�1X
lD0

Œglr ; gr �;
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and

F3 W K3 ! B3;

‰r;s;t 7! Œgr ; gs; gt � � Œgs; gr ; gt � � Œgr ; gt ; gs�C Œgt ; gr ; gs�C Œgs; gt ; gr � � Œgt ; gs; gr �;

‰r;r;s 7!

mr�1X
lD0

�
Œglr ; gr ; gs� � Œg

l
r ; gs; gr �C Œgs; g

l
r ; gr �

�
;

‰r;s;s 7!

ms�1X
lD0

�
Œgr ; g

l
s; gs� � Œg

l
s; gr ; gs�C Œg

l
s; gs; gr �

�
;

‰r;r;r 7!

mr�1X
lD0

Œgr ; g
l
r ; gr �;

for 0 � r � k, 0 � r < s � k and 0 � r < s < t � k.

Lemma 3.9. The following diagram is commutative:

� � � // K3
d //

F3
��

K2
d //

F2
��

K1
d //

F1
��

K0 // Z // 0

� � � // B3
à3 // B2

à2 // B1
à1 // B0 // Z // 0:

Proof. The proof is routine and indeed becomes much easier, so we omit it.

Corollary 3.10. Let � 2 B�3 be a 3-cocycle. Then � is a 3-coboundary if and only if
F �3 .�/ is a 3-coboundary.

Proof. Follows from the fact that F �3 induces an isomorphism between 3-cohomology
groups.

3.3. Abelian cocycles. We start with the definition of abelian cocycles. For this, we
need to recall the definition of the twisted quantum double. The twisted quantum double
Dˆ.G/ of G with respect to the 3-cocycle ˆ over G is the semisimple quasi-Hopf algebra
with underlying vector space .kG/� ˝ kG in which multiplication, comultiplication �, asso-
ciator �, counit ", antipode S , ˛ and ˇ are given by

.e.g/˝ x/.e.h/˝ y/ D �g.x; y/ıgx ;h e.g/˝ xy;

�.e.g/˝ x/ D
X
hkDg

x.h; k/e.h/˝ x ˝ e.k/˝ x;

� D
X

g;h;k2G

ˆ.g; h; k/�1e.g/˝ 1˝ e.h/˝ 1˝ e.k/˝ 1;

S.e.g/˝ x/ D �g�1.x; x
�1/�1x.g; g

�1/�1e.x�1g�1x/˝ x�1;

".e.g/˝ x/ D ıg;1; ˛ D 1; ˇ D
X
g2G

ˆ.g; g�1; g/e.g/˝ 1;
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where ¹e.g/ j g 2 Gº is the dual basis of ¹g j g 2 Gº, ıg;1 is the Kronecker delta,
gx D x�1gx, and

�g.x; y/ D
ˆ.g; x; y/ˆ.x; y; .xy/�1gxy/

ˆ.x; x�1gx; y/
;

g.x; y/ D
ˆ.x; y; g/ˆ.g; g�1xg; g�1yg/

ˆ.x; g; g�1yg/

for any x; y; g 2 G (cf. [8]).
Clearly,M is a leftDˆ.G/-module if and only ifM is a left-left Yetter–Drinfeld module

over .kG;ˆ/ as defined in the previous section. For our purpose, we prefer the following
equivalent definition of abelian cocycles via twisted quantum doubles appeared in [28].

Definition 3.11. A 3-cocycle ˆ over G is called abelian if Dˆ.G/ is a commutative
algebra.

Remark 3.12. Abelian cocycles of the previous form and some related properties were
discussed by Ng [29] and by Mason–Ng [28]. In [29], Ng gave a quite symmetric description
of abelian cocycles. Note that the Eilenberg–MacLane abelian cocycles [10] are different from
the present ones. Recall that, an Eilenberg–MacLane abelian cocycle is a pair .ˆ; d/ where
ˆ 2 Z3.G;k�/ and d is a braiding which is compatible withˆ. But, we still have the following
observation: if .ˆ; d/ is an Eilenberg–MacLane abelian cocycle, then ˆ must be an abelian
cocycle in our sense. As this fact is not necessary for our following discussions, here we won’t
provide a proof.

As a direct consequence of this definition, we have the following conclusion.

Corollary 3.13. Every Yetter–Drinfeld module over .kG;ˆ/ is diagonal if and only if
ˆ is abelian.

Now we go back to the situation whereG is an abelian group. SoG Š Zm1 � � � � � Zmn
with mj 2 N for 1 � j � n and mi jmiC1 for all 1 � i � n � 1. Let gi be a generator of
Zmi . By Proposition 3.8, we can assume that ˆ D ˆa for some a 2 A. Using our formula
of 3-cocycles, we have the following conclusion which provides a quite explicit description of
abelian cocycles.

Proposition 3.14. The 3-cocycle ˆa is abelian if and only if

arst D 0

for all 1 � r < s < t � n.

Proof. “(” If all arst D 0, then by (3.10) it is not hard to find that

ˆa.x; y; z/ D ˆa.x; z; y/

for x; y; z 2 G. From this, we can find that

�g.x; y/ D �g.y; x/

for g; x; y 2 G, which implies that Dˆa.G/ is a commutative.

Brought to you by | University of Science and Technology of China
Authenticated

Download Date | 3/1/20 7:40 PM



222 Huang et al., Finite quasi-quantum groups of diagonal type

“)” If arst ¤ 0 for some r < s < t . For the sake of simplicity, assume that a123 ¤ 0.
Through direct computations, we have

�g1.g2;g3/ D 1; �g1.g3;g2/ D �
�a123
m1

:

This implies that

.e.g1/˝ g2/.e.g1/˝ g3/ ¤ .e.g1/˝ g3/.e.g1/˝ g2/:

3.4. Resolution. Let G D Zm1 � � � � � Zmn be as before and let ˆa be an abelian 3-
cocycle of G. One of our key observations is that ˆa can be “resolved” in a slightly bigger
abelian group G. More precisely, take G D Zm1 � � � � � Zmn for mi Dm2i (1 � i � n). As
before, let gi (resp. gi ) be a generator of Zmi (resp. Zmi ) for 1 � i � n. Using such notations,
we have a canonical group epimorphism:

� W G ! G; gi 7! gi .1 � i � n/:

From this map, we can pull back the 3-cocycles of G and get many 3-cocycles over G. That
is, the map

��.ˆa/ W G �G �G ! k�; .g; h; z/ 7! ˆa.�.g/; �.h/; �.z//; g; h; z 2 G

is a 3-cocycle of G. Our observation is that ��.ˆa/ is indeed a boundary. In fact, consider the
map

Ja W G �G ! k�;(3.11)

.g
x1
1 � � �g

xn
n ; g

y1
1 � � �g

yn
n / 7!

nY
lD1

�
alxl .yl�y

0
l
/

ml

Y
1�s<t�n

�
astxt .ys�y

0
s/

msmt ;

where y0i is the remainder of yi divided by mi for 1 � i � n. For simplicity, we just take
�t D e

2�i=t for t 2 N. We are thus led to the following result:

Proposition 3.15. The differential of Ja equals ��.ˆa/, that is,

à.Ja/ D �
�.ˆa/:

Proof. Indeed,

à.Ja/.g
i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n /

D
Ja.g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n /Ja.g

i1
1 � � �g

in
n ; g

j1Ck1
1 � � �g

jnCkn
n /

Ja.g
i1Cj1
1 � � �g

inCjn
n ; g

k1
1 � � �g

kn
n /Ja.g

i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n /

D

� nY
lD1

�
aljl .kl�k

0
l
/

ml

Y
1�s<t�n

�
astjt .ks�k

0
s/

msmt

nY
lD1

�al il .jlCkl�.jlCkl /
0/

ml

�

Y
1�s<t�n

�ast it .jsCks�.jsCks/
0/

msmt

�� nY
lD1

�
al .ilCjl /.kl�k

0
l
/

ml

�

Y
1�s<t�n

�
ast .itCjt /.ks�k

0
s/

msmt

nY
lD1

�
al il .jl�j

0
l
/

ml

Y
1�s<t�n

�
ast it .js�j

0
s/

msmt

��1
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D

nY
lD1

�
al il .j

0
l
Ck0

l
�.jlCkl /

0/
ml

Y
1�s<t�n

�
ast it .j

0
sCk

0
s�.jsCks/

0/
msmt

D

nY
lD1

�
al i
0
l
Œ
j 0
l
Ck0
l

ml
�

ml

Y
1�s<t�n

�
ast i
0
t Œ
j 0sCk

0
s

ms
�

mt

D ��.ˆa/.g
i1
1 � � �g

in
n ; g

j1
1 � � �g

jn
n ; g

k1
1 � � �g

kn
n /:

Although the above conclusion is true for abelian 3-cocycles, it does not hold for non-
abelian 3-cocycles. Precisely, let ˆ be a non-abelian 3-cocycle on G. Then we will show
that there does not exist any finite abelian group G0 such that there is a group epimorphism
� W G0 ! G making ��.ˆ/ to be a coboundary (this is a surprising phenomenon, at least to
us). To prove this fact, we start with the following special case, and then reduce the general
case to this special case.

Lemma 3.16. Let ˆa be a non-abelian 3-cocycle onG. Suppose that we have a group
epimorphism

� W Zl1 � � � � � Zln D hg1i � � � � � hgni ! G D hg1i � � � � � hgni; gi 7! gi :

Then ��.ˆa/ is not a coboundary on Zl1 � � � � � Zln .

Proof. Since ˆa is not an abelian cocycle, there are r < s < t such that arst ¤ 0 by
Proposition 3.14. Without loss of generality, we assume that a123 ¤ 0. Assume that ��.ˆa/

is a coboundary. By Corollary 3.10, F �3 .�
�.ˆa// is coboundary and then Lemma 3.3 implies

that F �3 .�
�.ˆa//1;2;3 D 1. But, direct computation shows that

F �3 .�
�.ˆa//1;2;3 D F

�
3 .�

�.ˆa//.‰1;2;3/

D ��.ˆa/
�
Œg1; g2; g3� � Œg2; g1; g3� � Œg1; g3; g2�

C Œg3; g1; g2�C Œg2; g3; g1� � Œg3; g2; g1�
�

D ˆa

�
Œg1;g2;g3� � Œg2;g1;g3� � Œg1;g3;g2�

C Œg3;g1;g2�C Œg2;g3;g1� � Œg3;g2;g1�
�

D �a123m1
¤ 1:

This is a direct contradiction.

Proposition 3.17. Let ˆa be a non-abelian 3-cocycle on G and let G be an arbitrary
finite abelian group. Suppose that we have a group epimorphism � W G� G. Then ��.ˆa/

is not a coboundary on G.

Proof. On the contrary, assume that ��.ˆa/ is a coboundary onG. Let gi be a preimage
of gi for 1 � i � n. Let G1 be the subgroup generated by g1; : : : ; gn and so we have a group
embedding � W G1 ! G. Assume that ord.gi / D li . Then clearly we have the following group
epimorphism:

� 0 W Zl1 � � � � � Zln D hh1i � � � � � hhni� G1; hi 7! gi :
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224 Huang et al., Finite quasi-quantum groups of diagonal type

Define f1 WD � ı � 0 W Zl1 � � � � � Zln ! G and f WD � ı f1. Note that by definition, the map
f is given by

Zl1 � � � � � Zln ! G; gi 7! gi .1 � i � n/:

If ��.ˆa/ is a coboundary on G, then f �1 .�
�.ˆa// D f

�.ˆa/ is still a coboundary. But this
is absurd by Lemma 3.16.

4. Nichols algebras of diagonal type in G
G

YDˆ

The aim of this section is to give a classification of the Nichols algebras of diagonal type
with arithmetic root system in GGYDˆ. The idea to realize our purpose consists of five steps.
Firstly, we can assume that the support group of B.V / is G, and from this assumption we
can prove that ˆ must be an abelian 3-cocycle over G. Secondly, we will develop a tech-
nique to change the base group fromG to a bigger one G together with a group epimorphism
� W G ! G. Thirdly, we will show that any Nichols algebra B.V / in GGYDˆ is isomorphic to
a Nichols algebra in G

GYD��.ˆ/, which is thus twist equivalent to a usual Nichols algebra by
Proposition 3.15. Fourthly, we want to get a return ticket, that is, we will give a sufficient and
necessary condition to determine when a Nichols algebra in GGYD��.ˆ/ is isomorphic to one in
G
GYDˆ. Finally, combining these results and Heckenberger’s classification of arithmetic root
systems, we obtain the classification of Nichols algebras of diagonal type with arithmetic root
system in GGYDˆ.

4.1. Start points. We give two conclusions as our preparations for classification. At
first, we will prove that any Nichols algebras of diagonal type can be realized in GGYDˆ, where
G is an abelian group and ˆ is an abelian 3-cocycle over G. Recall that in Remark 2.8, we
gave the definition of the support group for any V 2 GGYDˆ. For convenience, we denote the
support of V by GV and it is not hard to see that GV D GB.V / D GTˆ.V /.

Lemma 4.1. Let B.V / be a Nichols algebra of diagonal type in G
GYDˆ, and let

G0 D GB.V / be the support group of B.V /. Let ‰ D ˆjG0 . Then G0 is an abelian group
and ‰ is an abelian 3-cocycle overG0.

Proof. Firstly by Remark 2.8, we know that G0 lies in the center of G and thus it is an
abelian group.

Next we will prove that‰ is an abelian 3-cocycle overG0. Assume without loss of gener-
ality thatG0 D Zm1 � � � � � Zmn D hg1i � � � � � hgni, and ‰ is of the form (3.10). According
to Proposition 3.14, we only need to prove that arst D 0 for all 1 � r < s < t � n.

At first, fix a triple .r; s; t/ such that 1 � r < s < t � n. Since G0 D hh1; : : : ; hmi, we
have gr D h

k1
1 � � � h

km
m , where k1 < jh1j; : : : ; km < jhmj. Here jgj means the order of g. Con-

versely, hi (1 � i � m) can be presented by the generators of G0, i.e. hi D g
ci1
1 � � � g

cin
n , and

we get
mX
iD1

kicil �

´
0 .modml/ if l ¤ r;

1 .modmr/ if l D r:
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By (3.10), we have
‰.hi ; gs; gt / D

Y
1�j<s

�
cijajst
.mj ;ms ;mt /

;

so
mY
iD1

‰.hi ; gs; gt /
ki D

Y
1�j<s

�
ajst .

Pn
iD1 kicij /

.mj ;ms ;mt /
D �

arst
.mr ;ms ;mt /

:

On the other hand, since kXi (1 � i � m) are one-dimensional .kG0;e‰hi /-represen-
tations, e‰hi .gs; gt / D e‰hi .gt ; gs/. It follows by a direct computation that e‰hi .gs; gt / D 1
(since s < t), and thus e‰hi .gt ; gs/ D e‰hi .gs; gt / D 1:
Hence

‰.hi ; gs; gt / D
‰.gs; hi ; gt /

‰.gs; gt ; hi /
D

Y
s<p<t

�
cipaspt
.ms ;mp;mt /

h Y
t<q�n

�
ciqastq
.ms ;mt ;mq/

i�1
:

Then we get

mY
iD1

‰.hi ; gs; gt /
ki D

mY
iD1

² Y
s<p<t

�
cipaspt
.ms ;mp;mt /

h Y
t<q�n

�
ciqastq
.ms ;mt ;mq/

i�1³ki
D

Y
s<p<t

�
aspt .

Pm
iD1 kicip/

.ms ;mp;mt /

h Y
t<q�n

�
astq.

Pm
iD1 kiciq/

.ms ;mt ;mq/

i�1
D 1:

So we obtain �arst
.mr ;ms ;mt /

D 1 and this implies arst D 0 since 0 � arst < .mr ; ms; mt /.

For our purpose of classification of Nichols algebras B.V / of diagonal type in GGYDˆ,
it is harmless to assume in the rest of the paper that the support group of B.V / is G and thus
G is abelian and ˆ D ˆa is an abelian cocycle.

Secondly, we will show that there is a nice grading on B.V / 2 GGYDˆ. Let V 2 GGYDˆ

be a Yetter–Drinfeld module of diagonal type and ¹Xi j 1 � i � lº a canonical basis of V .
Let Zl be the free abelian group of rank l and assume that ei (1 � i � l) are the canonical
generators of Zl . The following fact is very important for our follow-up discussions, which is
indeed [23, Lemma 4.2]. We include a proof here for completeness and safety.

Proposition 4.2. There is a Zl -grading on the Nichols algebra B.V / 2 GGYDˆ by set-
ting degXi D ei .

Proof. Obviously, there is a Zl -grading on the tensor algebra Tˆ.V / 2 GGYDˆ by as-
signing degXi D ei . Let I D

L
i�0 Ii be the maximal graded Hopf ideal generated by ho-

mogeneous elements of degree greater than or equal to 2. To prove that B.V / is Zl -graded, it
amounts to prove that I is Zl -graded. This will be done by induction on theN-degree.

To this aim, let I k WD
L
0�i�k Ii for k � 0. Since I D

L
i�0 Ii is generated by homo-

geneous elements of degree greater than or equal to 2, we have

I 0 D I0 D 0 and I 1 D I0 ˚ I1 D 0:
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Hence I 0 and I 1 are Zl -graded. Now suppose I k is Zl -graded for a fixed k � 1. We shall
prove that I kC1 D

L
0�i�kC1 Ii is also Zl -graded.

Let X 2 IkC1 and X D X1 CX2 C � � � CXn, with each X i being Zl -homogeneous
and X i and Xj having different Zl -degrees if i ¤ j . Write

�.X i / D X i ˝ 1C 1˝X i C .X i /1 ˝ .X
i /2:

By definition, we have �.X/ D X ˝ 1C 1˝X C .X/1 ˝ .X/2, where

.X/1 ˝ .X/2 2 Tˆ.V /˝ I
k
C I k ˝ Tˆ.V /;

i.e.,
P
.X i /1 ˝ .X

i /2 2 Tˆ.V /˝ I
k C I k ˝ Tˆ.V /. According to the inductive assump-

tion, Tˆ.V /˝ I k C I k ˝ Tˆ.V / is a Zl -graded space. So each .X i /1 ˝ .X i /2 is an element
of Tˆ.V /˝ I k C I k ˝ Tˆ.V / as � preserves Zl -degrees. If there is an X i … IkC1, then
I C hX i i is a Hopf ideal properly containing I , which contradicts the maximality of I . It
follows that X i 2 IkC1 for all 1 � i � n and hence I kC1 is also Zl -graded by the assumption
on X . This completes the proof of the proposition.

4.2. Change of base groups. Since Nichols algebras in the braided tensor category
G
GYDˆ are non-associative algebras, the structures of these algebras depend on G and the 3-
cocycle ˆ onG. We will callG the base group of B.V /. One of the most important methods
of this paper is to change the base groups of Nichols algebras. We need the following definition.

Definition 4.3. Let B.V / and B.U / be Nichols algebras in GGYDˆ andHHYD‰, respec-
tively, with dimV D dimU D l . We say B.V / is isomorphic to B.U / if there is a Zl -graded
linear isomorphism F W B.V /! B.U / which preserves multiplication and comultiplication.

Lemma 4.4. Suppose .V; ıV ;F/ 2 GGYDˆ and .U; ıU ;F/ 2 HHYD‰. LetG0 andH 0 be
support groups of V and U , respectively. If there are a linear isomorphism F W V ! U and a
group epimorphism f W G0 ! H 0 such that

ıU ı F D .f ˝ F / ı ıV ;(4.1)

F.g F v/ D f .g/ F F.v/;(4.2)

ˆjG0 D f
�‰jH 0

for any g 2 G0, v 2 V , then B.V / is isomorphic to B.U /.

Proof. Let F W TˆjG0 .V /! Tf �.‰jH 0 /.U / be the multiplicative linear map such that
F jV D F . It is easy to show that F also preserves the comultiplication between TˆjG0 .V / and
Tf �.‰jH 0 /.U /. By Corollary 3.13 and Lemma 4.1, both V and U have canonical basis. Let
¹Xi j 1 � i � lº be a canonical basis of V , then it is obvious that ¹Yi D F.Xi / j 1 � i � lº
is a canonical basis of U by (4.1) and (4.2). Let ¹ei j 1 � i � lº be the free generators of Zl .
Then TˆjG0 .V / and Tf �.‰jH 0 /.U / are Zl -graded by setting deg.Xi / D deg.Yi / D ei . Note
that F induces a one-to-one correspondence between the set of Zl -graded Hopf ideals of
TˆjG0 .V / and that of Tf �.‰jH 0 /.U /. By Proposition 4.2, we know that the maximal Hopf
ideals generated by homogeneous elements of degree � 2 in TˆjG0 .V / and in Tf �.‰jH 0 /.U /
are Zl -graded. It is obvious that F maps the maximal Hopf ideal of TˆjG0 .V / to that of
Tf �.‰jH 0 /.U /. Therefore, F induces a linear isomorphism from B.V / to B.U / which pre-
serves multiplication and comultiplication.
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The following definition is convenient for our later expositions.

Definition 4.5. If .F; f / is an isomorphism from B.V / to B.U / as in Lemma 4.4, then
we say B.V / is isomorphic to B.U / through the group morphism f .

Suppose

G D Zm1 � � � � � Zmn D hg1i � � � � � hgni;

G D Zm1 � � � � � Zmn D hg1i � � � � � hgni;

where mi Dm2i for 1 � i � n. Let

� W kG ! kG; gi 7! gi ; 1 � i � n

be the canonical epimorphism. Observe that � has a section

� W kG! kG;

nY
iD1

g
ij
i 7!

nY
iD1

g
ij
i

which is not a group morphism. Let ıL and F be the comodule and module structure maps of
V 2 GGYDˆ. Define

�L W V ! kG ˝ V; �L D .�˝ id/ıL;

I W kG ˝ V ! V; g I Z D �.g/ FZ

for all g 2 G and Z 2 V .

Lemma 4.6. Defined in this way, .V; �L;I/, denoted simply by eV in the following, is
an object in GGYD��ˆ.

Proof. This can be verified by direct computation:

e I .f I Z/ D �.e/ F .�.f / FZ/
D Q̂ z.�.e/; �.f //.�.e/�.f // FZ

DB��.ˆ/�.z/.e; f /ef I Z

for all e; f 2 G and ıL.Z/ D z ˝Z for Z 2 V .

Proposition 4.7. For any Nichols algebra B.V / 2 GGYDˆ, the Nichols algebra
B.eV / 2 GGYD��.ˆ/ is isomorphic to B.V /. Moreover, B.eV / is twist equivalent to a usual
Nichols algebra.

Proof. The first statement is a direct consequence of Lemma 4.4. For the second, just
note that ��.ˆ/ is a 3-coboundary on G by Proposition 3.15.
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To summarize so far, we have found the following route of transforming a non-associative
Nichols algebra to a usual one:

(4.3) B.V / 2 GGYDˆ (original Nichols algebra)

Lemma 4.4 and Lemma 4.6
��

B.V / Š B.eV / 2 GGYD��.ˆ/

Proposition 3.15
��

B.eV / is twisted equivalent to a usual Nichols algebra B.V /0

Since we only want to classify finite-dimensional Majid algebras, there is no harm to
assume that all the usual Nichols algebras appearing in this paper have arithmetic root systems.
According to this diagram, each diagonal Nichols algebra B.V / 2 GGYDˆ is corresponding to
a usual diagonal Nichols algebra, denoted by B.V /0 for convenience, in the above way (and
thus a unique way). Note that there is a Zl -graded linear isomorphism B.V / Š B.V /0. Thus,
it is reasonable to make the following definition.

Definition 4.8. The arithmetic root system of B.V / is defined to be that of B.V /0. That
is,4.B.V //�;E WD 4.B.V /0/�;E by the prescribed notations in Section 2.5. In particular, the
root system4.B.V // of B.V / equals4.B.V /0/.

The aim of this section is to classify the Nichols algebras of diagonal type with arithmetic
root system in GGYDˆ. Using diagram (4.3), we just need to answer the following question:
For a usual Nichols algebra B of diagonal type with arithmetic root system, when is B gotten
from a Nichols algebra B.V / 2 GGYDˆ? That is, find a return trip of diagram (4.3).

4.3. The return trip. Keep the notations of the previous subsection. At first, we give
the inverse version of Proposition 4.7.

Lemma 4.9. Let B.eV / 2 GGYD��.ˆ/ be a Nichols algebra of diagonal type and let
¹Yi j 1 � i � mº be a canonical basis of eV . Then B.eV / is isomorphic to a Nichols algebra in
G
GYDˆ through � if and only if

g
mi
i I Yj D Yj ; 1 � i � n; 1 � j � m:

Proof. If gmii I Yj D Yj , then one can easily show eV is an object inGGYDˆ by defining

ıL W V ! kG˝ V; ıL D .� ˝ id/�L;

F W kG˝ V ! V; g FZ D �.g/ I Z:

It is obvious that .idV ; �/ is an isomorphism between the Nichols algebras B.eV / 2 GGYD��.ˆ/

and B.V / 2 GGYDˆ.
For the other direction, suppose .F; �/ is an isomorphism from B.V / 2 GGYD��.ˆ/ to

B.U / 2 GGYDˆ. Then by Definition 4.8 and equation (4.2), we have

F.g
mi
i I Yj / D �.g

mi
i / I F.Yj / D F.Yj /:

This implies gmii I Yj D Yj for all 1 � i � n, 1 � j � m.

Brought to you by | University of Science and Technology of China
Authenticated

Download Date | 3/1/20 7:40 PM



Huang et al., Finite quasi-quantum groups of diagonal type 229

Now fix a usual Nichols algebra of diagonal type B.V /0 2 GGYD with support group G.
According to (4.3), we need to answer the following question:

Question 4.10. When is B.V /0Ja isomorphic to a Nichols algebra inGGYDˆa through �?

Let ¹Xi j 1 � i � mº be a canonical basis of V . Assume that

ı0L.Xi / D hi ˝Xi ; gk F
0 Xj D qkjXj

for 1 � i; j � m, 1 � k � n, hi 2 G and qkj 2 k�, where ı0L (resp. F0) is the comodule (resp.
module) structure map of B.V /0 2 GGYD . So there are 0 � xkj ; sik < mk such that

qkj D �
xkj
mk ; hi D

nY
kD1

g
sik
k

for 1 � i; j � m and 1 � k � n. Let X D .xij /n�m. By assumption, the support group
GB.V /0 D G and ¹hi j 1 � i � mº generate the group G. So there are tjl 2 N such that

gj D

mY
lD1

h
tjl
l
; 1 � j � n:

By S and T , we denote the matrices .sik/m�n and .tjl/n�m. It is obvious that

(4.4) TS �

0BBBB@
1 .modm1/ 0 .modm1/ � � � 0 .modm1/

0 .modm2/ 1 .modm2/ � � � 0 .modm2/
:::

:::
:::

0 .modmn/ 0 .modmn/ � � � 1 .modmn/

1CCCCA :
With these notations, we can now give the answer to Question 4.10.

Proposition 4.11. The twisting B.V /0Ja is isomorphic to a Nichols algebra in GGYDˆa

through � if and only if the following congruence equalities hold:

mX
jD1

xij tlj � 0 .modmi /; 1 � l < i � n;(4.5)

mX
jD1

xij tij � ai .modmi /; 1 � i � n;(4.6)

� mX
jD1

xij tlj

�
ml �miail .modmiml/; 1 � i < l � n:(4.7)

Proof. By Lemma 4.9, B.V /0Ja is isomorphic to a Nichols algebra in GGYDˆa if and
only if gmii F

0
Ja
Xj D Xj for all 1 � i � n, 1 � j � m. By definition, we have

g
mi
i F

0
Ja
Xj D

Ja.g
mi
i ; hj /

Ja.hj ; g
mi
i /

g
mi
i F

0 Xj D
Ja.g

mi
i ; hj /

Ja.hj ; g
mi
i /

�
mixij
mi Xj

Brought to you by | University of Science and Technology of China
Authenticated

Download Date | 3/1/20 7:40 PM



230 Huang et al., Finite quasi-quantum groups of diagonal type

for all 1 � i � n, 1 � j � m. Using (3.11),

Ja.g
mi
i ; hj /

Ja.hj ; g
mi
i /

�
mixij
mi D

1

�
aisjimi
mi

Q
i<k�n �

aiksikmi
mimk

�
mixij
mi :

So for all 1 � i � n, 1 � j � m, equations gmii F
0
Ja
Xj D Xj are equivalent to

(4.8) �
mixij
mi D �

aisjimi
mi

Y
i<k�n

�
aiksjkmi
mimk :

Next we will show that equations (4.8) are equal to equations (4.5)–(4.7). At first, we assume
that (4.8) hold. Then for any 1 � l � n, we have

(4.9) �
mixij tlj
mi D �

ai tlj sjimi
mi

Y
i<k�n

�
aiktlj sjkmi
mimk :

Considering the product on both sides of equations (4.9) for j D 1; : : : ; m, we get

mY
jD1

�
mixij tlj
mi D

mY
jD1

�
�
ai tlj sjimi
mi

Y
i<k�n

�
aiktlj sjkmi
mimk

�
;

which is equal to

(4.10) �

Pm
jD1mixij tlj

mi D �
ai
Pm
jD1 tlj sjimi

mi

Y
i<k�n

�
aik

Pm
jD1 tlj sjkmi

mimk :

When i > l , by (4.4), equations (4.10) become

(4.11) �

Pm
jD1mixij tlj

mi D 1:

These imply that
Pm
jD1 xij tlj � 0 .modmi /, which are equations (4.5). When i D l , then

equations (4.10) become

(4.12) �

Pm
jD1mixij tij

mi D �aimimi
;

which imply equations (4.6). When i < l , then equations (4.10) become

(4.13) �

Pm
jD1mixij tlj

mi D �ailmimiml
;

which are the same as equations (4.7).
Next, we assume that (4.5)–(4.7) hold. Clearly, equations (4.5)–(4.7) are equal to (4.11)–

(4.13). Considering the product of these three identities, we get

(4.14)
mY
jD1

�
mixij tlj
mi D

mY
jD1

�
�
ai tlj sjimi
mi

Y
i<k�n

�
aiktlj sjkmi
mimk

�
for 1 � i; l � n. Let T 0 be an m �m-matrix such that t 0ij D tij for 1 � i � n, 1 � j � m
and otherwise t 0ij D 0. From (4.4) we know that the rank of T 0 is n. So for any 1 � i � n,
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there exists an m �m-matrix Si D .s
i
jk
/ such that

Pm
kD1 s

i
jk
t 0
kl
D ıij ıil for all 1 � j; l � m.

Taking sr
rl

’s power of equation (4.14), we have

mY
jD1

�
mixij s

r
rl
tlj

mi D

mY
jD1

�
�
ais

r
rl
tlj sjimi

mi

Y
i<k�n

�
aiks

r
rl
tlj sjkmi

mimk

�
:

By taking the product of the identity above for 1 � l � m, we get

(4.15)
mY
lD1

mY
jD1

�
mixij s

r
rl
tlj

mi D

mY
lD1

mY
jD1

�
�
ais

r
rl
tlj sjimi

mi

Y
i<k�n

�
aiks

r
rl
tlj sjkmi

mimk

�
:

The left-hand side of the identity is

mY
lD1

mY
jD1

�
mixij s

r
rl
tlj

mi D

mY
lD1

mY
jD1

�
mixij s

r
rl
t 0
lj

mi D �mixirmi
:

The right-hand side is

mY
lD1

mY
jD1

�
�
ais

r
rl
tlj sjimi

mi

Y
i<k�n

�
aiks

r
rl
tlj sjkmi

mimk

�
D

mY
lD1

mY
jD1

�
�
ais

r
rl
t 0
lj
sjimi

mi

Y
i<k�n

�
aiks

r
rl
t 0
lj
sjkmi

mimk

�
D �aisrimimi

Y
i<k�n

�aiksrkmimimk
:

Hence (4.15) is actually identical to (4.8).

Remark 4.12. As we pointed out at the paragraph after Corollary 3.13, we can assume
that mi jmj for i < j . We will keep this assumption in the rest of the paper. In this way, the
identities in (4.7) are equal to

ml

mi

mX
jD1

xij tlj � ail .modml/; 1 � i < l � n:

The above proposition implies that we do not have many choices on the sequence a 2 A,
see (3.9).

Corollary 4.13. For the Nichols algebra B.V /0 2 GGYD , there is at most one a 2 A

such that B.V /0Ja is isomorphic to a Nichols algebra in GGYDˆa through � . Moreover, this a

exists if and only if equations (4.5) hold and in this case a can be taken in the following way:

(4.16) ai �

mX
jD1

xij tij .modmi /I ail �
ml

mi

mX
jD1

xij tlj .modml/I ailt D 0

for 1 � i � n, 1 � i < l � n and 1 � i < l < t � n.
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232 Huang et al., Finite quasi-quantum groups of diagonal type

Proof. By Proposition 4.11, we know that a must satisfy equations (4.6) and (4.7).
At the same time, since we always assume that ˆa is an abelian cocycle, arst D 0 for all
1 � r < s < t � n by Proposition 3.14. Therefore, there is at most one a that satisfies these
conditions. Proposition 4.11 also implies that such an a exists if and only if equations (4.5)
hold.

Now we are in the position to find the “return trip” as follows:

(4.17) B.V / 2 GGYDˆa

B.V /0Ja 2 GGYD��.ˆa/

(4.5) hold

OO

usual Nichols algebra B.V /0 2 GGYD

by (4.16), find Ja

OO

4.4. Root datum and classification of Nichols algebras of diagonal type with arith-
metic root systems inG

G
YDˆ. By (4.17), we want to formulate the conditions listed in (4.17)

by the language of root data. Using such language, we get a complete classification of Nichols
algebras of diagonal type with arithmetic root systems in GGYDˆ.

Now suppose .
a
; �; E/ is an arithmetic root system, and D�;E is the Dynkin diagram

of .
a
; �; E/. Up to twist equivalence, .

a
; �; E/ is uniquely determined by D�;E . In [20],

Heckenberger classified all the arithmetic root systems. Fix a Dynkin diagram withm vertices.
We call ®

qi i D �.ei ; ei /; fqij D �.ei ; ej /�.ej ; ei / j 1 � i; j � m¯
the structure constants of D�;E .

Definition 4.14. LetG D Zm1 � � � � � Zmn be the abelian group defined as above and
set mi WDm2i for 1 � i � n. Suppose D�;E is a Dynkin diagram of an arithmetic root system
4�;E and .qi i ;fqij / is the set of structure constants. Moreover, suppose there exist parameter
matrices S and X such that

(1) S D .sij /m�n is a matrix with integer entries 0 � sij < mi for all 1 � i � m, 1 � j � n
such that there exists a matrix T D .tij /n�m satisfying (4.4);

(2) X D .xij /n�m is a matrix with integer entries 0� xij <mi for all 1� i �m, 1� j � n
such that

qi i D

nY
kD1

�sikxkimk
; fqij D nY

kD1

�
sikxkjCsjkxki
mk

and satisfying (4.5).

Then we call D DD.D�;E ;S;X/ a root datum overG and moreover we call4 (resp.4�;E )
the root system (resp. arithmetic root system) of D.

For a fixed root datum D DD.D�;E ;S;X/ over G, define a sequence a 2 A through
equations (4.16). Now we can define a Nichols algebra B.VD/ 2

G
GYD��.ˆa/ in the fol-
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lowing way: Let VD be the Yetter–Drinfeld module in G
GYD��.ˆa/ with a canonical basis

¹Xi j 1 � i � mº such that

ıL.Xi / D

nY
kD1

g
sik
k
˝Xi ; gi I Xj D �

xij
mi

Ja.gi ;
Qn
kD1 g

sik
k
/

Ja.
Qn
kD1 g

sik
k
; gi /

Xj :

Now the main result of this section can be stated as follows.

Theorem 4.15. (1) The Nichols algebra B.VD/ is isomorphic to a Nichols algebra
of diagonal type with arithmetic root system in GGYDˆa through the group epimorphism
� W G ! G.

(2) Suppose B.V / is a Nichols algebra of diagonal type with arithmetic root system in
G
GYDˆa and the support group is G. Then there exists a root datum D over G such
that B.VD/ Š B.V / through the group epimorphism � W G ! G.

Proof. The first statement is just a direct consequence of (4.17) and the definition of a
root datum. Now we show the second statement. According to (4.3), from B.V / one can con-
struct a usual Nichols algebra B.V /0. By the construction of B.V /0 we can find that B.V /0Ja

is isomorphic to B.V / through � . By Proposition 4.11 and the definition of a root datum, we
know that there is a root datum D overG such that B.V /0Ja D B.VD/.

Convention 4.16. By this theorem, we know that the Nichols algebra B.VD/ is isomor-
phic to a unique Nichols algebra in GGYDˆa . For convenience, this Nichols algebra is denoted
by B.D/.

5. Classification results

In this section, all the finite-dimensional connected graded pointed Majid algebrasM of
diagonal type will be classified. The main idea is to show that the coinvariant subalgebra of
M is indeed a Nichols algebra of diagonal type and from this we can apply the classification
results obtained in the previous section.

5.1. General setup. In this section, we always assume that M is a finite-dimensional
connected coradically graded pointed Majid algebra of diagonal type. From Section 2.1, we
know that

M0 D .kG; ˆ/

whereG is the group consisting of all the group-like elements andˆ is a 3-cocycle onG. Using
the same arguments given in Proposition 4.1 and our assumption that M being connected, we
know thatG is abelian and ˆ is an abelian cocycle. Therefore,

G D Zm1 � � � � � Zmn D hg1i � � � � � hgni

withmi jmj for 1 � i < j � n, and
ˆ D ˆa

for some a 2 A with arst D 0 for all 1 � r < s < t � n.
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234 Huang et al., Finite quasi-quantum groups of diagonal type

LetR be the coinvariant subalgebra ofM. ThenR is a Hopf algebra in GGYDˆ and

M D R#kG:

The main task of this section is to show that R is indeed a Nichols algebra in GGYDˆ. From
the classification results obtained in the previous section, we can classifyM directly.

5.2. R is a Nichols algebra. Note that we already showed that each finite-dimensional
rank-2 pointed Majid algebra is generated by group-like and skew-primitive elements in [23].
We gradually realize that the methods developed in [23] still work for pointed Majid algebras
of diagonal type. For completeness and safety, the proof will be given though it is similar to
the version of [23].

The main result of this subsection can be stated as follows.

Proposition 5.1. In GGYDˆa , we haveR Š B.R1/.

We give several preparations. Take a Nichols algebra B.V / of diagonal type in GGYDˆa .
Then according to (4.3), we have

B.V / Š B.eV / 2 GGYD��.ˆa/

and B.eV /J�1a D B.eV J�1a / is a usual Nichols algebra in GGYD . As before, we denote this usual
Nichols algebra by B.V /0 and we use V 0 to denote the Yetter–Drinfeld module eV J�1a . That is,
B.V /0 D B.V 0/. Let ¹Xi j 1 � i � mº be a canonical basis of V 0. Then B.V 0/ Š T .V 0/=I

where I is the Hopf ideal of T .V 0/ generated by the polynomials in ¹Xi j 1 � i � mº listed
in [5, Theorem 3.1]. In the following, let S denote the set of these polynomials. Define a map
‰ W Tà.Ja/.

eV / D Tà.Ja/.V
0Ja/! T .V 0/ by

‰
�
.� � � ..Y1 ı Y2/ ı Y3/ � � �Yn/

�
D

n�1Y
iD1

Ja.y1 � � �yi ; yiC1/Y1Y2 � � �Yn

for all Yi 2 ¹X1; X2; : : : ; Xmº. It is easy to see that ‰ is an isomorphism of linear spaces. The
following conclusion is [23, Lemma 4.5].

Lemma 5.2. The set‰�1.S/ is a minimal set of defining relations of B.V 0/Ja DB.eV /.
We also need the following two lemmas, which were given essentially in [5] and were

rephrased as follows in [23, Lemmas 4.6 and 4.7].

Lemma 5.3. Let Z be a polynomial in S. Then

B.V 0Ja ˚ k‰�1.Z// Š B.V 0 ˚ kZ/Ja :

Lemma 5.4. Let B.V 0/ 2 GGYD be a finite-dimensional Nichols algebra of diagonal
type, Z a polynomial in S and U 0 D V 0 ˚ kZ. Then B.U 0/ is infinite-dimensional.

The following is a generalized version of [23, Propostion 4.8], where we proved it in the
rank-2 case.
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Proposition 5.5. Let R D
L
i�0Ri be a finite-dimensional graded (not necessarily

coradically graded) Hopf algebra in GGYDˆ. If R is generated by R1, then R D B.R1/.

Proof. Let I be an ideal of Tˆ.R1/ such that R D Tˆ.R1/=I . Clearly, we have a
surjective Hopf map

� W R� B.R1/:

By Proposition 4.7, B.R1/ is also a Nichols algebra in GGYD��.ˆ/ for G D Zm1 � � � � � Zmn .
By Proposition 3.15, ��.ˆ/ D à.J /. Therefore, B.R1/

J�1
2 GGYD is a usual Nichols alge-

bra. Now assume that � is not an isomorphism. Then there should be some polynomials in
‰�1.S/, which are not contained in I by Lemma 5.2. Suppose that ‰�1.Z/ is one of those
with minimal length. Then we know that ‰�1.Z/ must be a primitive element in R. Let
U D R1 ˚ k‰�1.Z/. Then, by the preceding assumption, there is an embedding of linear
spaces B.U / ,! R.

We already know that B.R1/
J�1 is a finite-dimensional Nichols algebra in G

GYD . It is
not hard to see that there exists R01 2

G
GYD such that R1 D R0J1 (since J induces an equiva-

lence between GGYD and GGYDà.J / D G
GYD��.ˆ/). By Lemma 5.3, we have

B.R01 ˚Z/
J
D B.R1 ˚ k‰�1.Z// D B.U /:

Note that B.R01 ˚Z/
J is infinite-dimensional due to Lemma 5.4. Hence B.U / is infinite-

dimensional, which contradicts the assumption that R is finite-dimensional. Thus � is an iso-
morphism and R is the Nichols algebra B.R1/.

In order to prove Proposition 5.1, we still need the following lemma.

Lemma 5.6. Let R D
L
i�0Ri be a graded Hopf algebra in GGYDˆ with R0 D k1

and P.R/ D R1. Then the right dual R� D
L
i�0R

�
i (resp. the left dual �R D

L
i�0
�Ri ) is

generated by R�1 (resp. �R1).

Proof. Note that the proof of [23, Lemma 4.10] does neither depend on the abelian
group G nor on the abelian 3-cocycle ˆ of G. Hence we can prove the lemma in the same
way.

Proof of Proposition 5.1. By assumption, R0 D k1 and P.R/ D R1. According to
Lemma 5.6, R� D

L
i�0R

�
i is generated by R�1 . By Proposition 5.5, R� D B.R�1/. So

we have P.R�/ D R�1 , and �.R�/ D R is generated by R1 according to Lemma 5.6 again.
HenceR is also a Nichols algebra by Proposition 5.5. Thus,R D B.R1/.

5.3. Classification result. For a root datum D DD.D�;E ;S;X/, there is a Nichols
algebra B.D/ in G

GYDˆa , where a 2 A is determined by equations (4.16). If we denote
M.D/ D B.D/#kG, we can formulate the main result of the paper as follows.

Theorem 5.7. Keep the notations as before. We have:

(1) The Majid algebra M.D/ is a connected coradical graded pointed Majid algebra of
diagonal type over the groupG. Moreover,M.D/ is finite-dimensional if and only if the
heights of all restricted Poincaré–Birkhoff–Witt generators of B.D/ are finite.
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236 Huang et al., Finite quasi-quantum groups of diagonal type

(2) Any finite-dimensional connected coradical graded pointed Majid algebra of diagonal
type overG is isomorphic to aM.D/ for some D.

Proof. It follows from Proposition 5.1 and Theorem 4.15.

5.4. A corollary. In [2, Conjecture 1.4], Andruskiewitch–Schneider conjectured that
every finite-dimensional pointed Hopf algebras over k is generated by group-like and skew-
primitive elements. This is the so-called generation problem, which plays an important role in
the classification of pointed Hopf algebras. It is true in many cases, see [5]. This conjecture
was generalized to finite-dimensional pointed Majid algebras or even to pointed finite tensor
categories [14].

Corollary 5.8. Suppose M is a finite-dimensional pointed Majid algebras of diagonal
type. ThenM is generated by group-like and skew-primitive elements.

Proof. Since M is generated by group-like and skew-primitive elements if and only if
its coradically graded version gr.M/ is, we can assume that M is coradically graded. Let R
be the coinvariant subalgebra of M, and assume that its support group is H . Then R#kH is
a finite-dimensional connected coradically graded pointed Majid algebra of diagonal type, and
thus it is generated by group-like and skew-primitive elements according to Theorem 5.7. This
implies thatM is also generated by group-like and skew-primitive elements.

6. Examples of genuine pointed Majid algebras

In this section, we provide some methods to construct genuine pointed Majid algebras
from arithmetic root systems. For each arithmetic root system

a
�;E of rank � satisfying a

mild condition, we show that there always exists a genuine pointed Majid algebra of standard
typeM Š B.V /#kZ�m, such that the arithmetic root system of B.V / is

a
�;E . For arithmetic

root systems of Cartan type, we also provide a unified method to construct genuine finite-
dimensional pointed Majid algebras.

6.1. Pointed Majid algebras of typical type. Suppose that M is a pointed Majid
algebra generated by the abelian group G and skew-primitive elements ¹X1; : : : ; Xnº with
�.Xi / D Xi ˝ 1C gi ˝Xi , 1 � i � n. Then as in our previous paper [23], we say that M
is of typical type if G D hg1i � � � � � hgni. This definition is transferred naturally to Yetter–
Drinfeld modules and thus Nichols algebras.

Definition 6.1. A Yetter–Drinfeld module V in GGYDˆa of diagonal type is said to be of
typical type if there exists a canonical basis X1; : : : ; Xn with degrees g1; : : : ;gn, respectively,
such thatG D hg1i � � � � � hgni. The Nichols algebra B.V / 2 GGYDˆa is typical if V is so.

The definition is independent of the choice of the canonical basis. If V 2 GGYDˆa is a
Yetter–Drinfeld module of typical type, then B.V /#kG is a pointed Majid algebra of typical
type.
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Lemma 6.2. LetG D hg1i � � � � � hgni D Zm1 � � � � � Zmn and letˆa be an abelian
3-cocycle onG.

(1) Suppose V is a Yetter–Drinfeld module of typical type in G
GYDˆa and X1; : : : ; Xn is

a canonical basis of V . Let .xij / be the numbers satisfying gi FXj D �
xij

m2
i

Xj for all
1 � i; j � n. Then we have

xij � 0 .modmi /; i > j;(6.1)

xi i � ai .modmi /I mjxij �miaij .modmimj /; i < j:(6.2)

(2) Conversely, let V D k¹X1; : : : ; Xnº be a kG-comodule such that the degree of Xi is
gi for 1 � i � n. If we have numbers .xij /1�i;j�n satisfying equations (6.1), then the
action

gi FXj WD �
xij

m2
i

Xj ; 1 � i; j � n

makes V a typical Yetter–Drinfeld module in G
GYDˆa , where the sequence a are the

numbers determined by equations (6.2).

Proof. (1) Let G D hg1i � � � � � hgni be such that jgi j Dm2i , 1 � i � n. By Proposi-
tion 4.7, B.V / can be viewed as a Yetter–Drinfeld module in GGYD��.ˆa/ through

gi FXj D �
xij

m2
i

Xj ; 1 � i; j � n:

So B.V /J
�1
a 2 GGYD . Since

gi FJ�1a Xj D
J.gi ; gj /

J.gj ; gi /
gi FX

and J.gi ; gj / D J.gj ; gi / D 1, we have

gi FJ�1a
Xj D �

xij

m2
i

Xj :

Identities (6.1) and (6.2) follow from Proposition 4.11.
(2) Follows from Proposition 4.11.

In the following, for a root of unity q we use jqj to denote its order.

Proposition 6.3. Let
a
�;E be a connected arithmetic root system of rank � listed in

[20] and let ¹qi i ;fqij j 1 � i < j � �º be its structure constants.

(a) If there is a qi i or fqij such that its order is not of the form p1p2 � � �pn, where p1; : : : ; pn
are mutually distinct prime numbers, then there is a typical Yetter–Drinfeld module

V 2
kZ�m
kZ�m

YDˆa

for some m and ˆa such that B.V /#kZ�m is a genuine pointed Majid algebra of typical
type, and the arithmetic root system of B.V / is equal to4�;E .
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(b) If the order of each qi i and fqij is of the form p1p2 � � �pn for some distinct prime numbers
p1; p1; : : : ; pn, then there is no typical Yetter–Drinfeld module in

kZ�m
kZ�m

YDˆa

for all m � 1 and ˆa ¤ 1.

Proof. (a) Firstly, we define a function � W N! N by

�.k/ D

´
k C 1 if k is odd,

k if k is even.

Let ‡ be the map

‡ W N! N; k D p
N1
1 p

N2
2 � � �p

Nn
n 7! ‡.k/ D p

�.N1/
1 p

�.N2/
2 � � �p�.Nn/n :

Here p1; p2; : : : ; pn are mutually distinct prime numbers. Let mi D jqi i j, mij D jfqij j for
1� i; j � � . Bym we denote the minimal positive number such that‡.mi /jm and‡.mij /jm
for all 1 � i; j � � . Then it is obvious that

p
m is a positive integer, since all

p
‡.mi / andp

‡.mij /, 1 � i; j � � are integers. Let m D
p
m.

Next we will show that there is a typical Yetter–Drinfeld module

V 2
kZ�m
kZ�m

YDˆa

for some nontrivial 3-cocycle ˆa on Z�m. Suppose g1; : : : ;g� are free generators of Z�m,
that is, Z�m D hg1i � � � � � hg� i, and V D k¹X1; : : : ; X�º is a Z�m-graded vector space. For
1 � i; j � � , define

xij D

8̂̂̂̂
<̂
ˆ̂̂:
m2

mi
if i D j;

0 if fqij D 1; i ¤ j;
0 if fqij ¤ 1 and i > j;
m2

mij
if fqij ¤ 1 and i < j:

According to (2) of Lemma 6.2, gi FXj D �
xij

m2
Xj , 1 � i; j � � makes V a typical Yetter–

Drinfeld module in
kZ�m
kZ�m

YDˆa ;

where the sequence a is determined by equations (6.2). Since

�
xii
m2
D �

m2

mi

m2
D qi i ; �

xij

m2
�
xji

m2
D �

m2

mij

m2
D fqij

for 1 � i; j � � , we prove that the arithmetic root system of B.V / is equal to4�;E .
At last, we will show that a is nonzero. From the assumption of the first part of the

proposition, there is an element � in ¹qi i ;fqij º satisfying the following conditions:

(C1) j�j D pN11 p
N2
2 � � �p

Nn
n and there exists some l such that Nl � 2. Here p1; p2; : : : ; pn

are mutually distinct prime numbers.

(C2) pNlC1
l

− mi , pNlC1l
− mij if mi ¤ j�j, mij ¤ j�j.
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If � D qi i for some i , then by the definition of m and the choice of �, we have m − m2
mi

, which
implies ai ¤ 0 .modm/ by equations (6.2). Similarly, if � D fqij for some i; j , then one can
prove that aij ¤ 0 .modm/ by (6.2). We have proved that a is nonzero.

(b) Suppose there is a typical Yetter–Drinfeld module

V 2
kZ�m
kZ�m

YDˆa

for some m � 1 and ˆa. Then we will prove that ˆa D 1.
On the one hand, let ¹X1; : : : ; X�º be a canonical basis of V and ¹g1; : : : ;g�º the corre-

sponding degrees. Since V is a typical Yetter–Drinfeld module, Z�m D hg1i � � � � � hg� i. Let
.xij /1�i;j�� be the numbers defined by gi FXj D �

xij

m2
Xj ; 0 � xij < m

2. So by equations
(6.2), we have

xi i � ai .modm/; 1 � i � �;(6.3)

xil � ail .modm/; 1 � i < l � �:(6.4)

On the other hand, since the order of �xii
m2
D qi i is of the form p1 � � �pn, where p1; : : : ; pn

are mutually distinct prime numbers, we have p1 � � �pnjm, and hence mjxi i . This implies that
ai D 0 by equations (6.3). Similarly, from equations (6.4) one can show that aij D 0 for
1 � i < j � � .

According to Proposition 6.3, we can construct a big class of genuine pointed Majid
algebras such that the corresponding Nichols algebras have arithmetic root systems.

Example 6.4. Let
a
�;E be an arithmetic root system of the following type:

(1) rank-2 arithmetic root systems of cases 1–5, 7–12, 14 as listed in [20, Table 1],

(2) rank-3 arithmetic root systems of cases 1–8, 10, 18 as listed in [20, Table 2],

(3) rank-4 arithmetic root systems of cases 1–14, 22 as listed in [20, Table 3],

(4) higher rank (� 5) arithmetic root systems of cases 1–4, 7–10, 14, 19, 22 as listed in
[20, Table 4],

such that the parameter q (if there is a parameter q in the root system) is a root of unity, and the
order of q is of the form p

N1
1 p

N2
2 � � �p

Nn
n , where p1; p2; : : : ; pn are mutually distinct prime

numbers, n � 3 and there exists at least oneNi � 2 for some 1 � i � n. Then we can construct
a genuine pointed Majid algebra of typical typeM D B.V /#kZ�m such that the arithmetic root
system of B.V / is4�;E , where the number m is listed in Table 1.

Explicitly, let Z�m D hg1i � � � � � hg� i and let V D k¹X1; : : : ; X�º be a Z�m-graded vec-
tor space with degXi D gi for 1 � i � � . Define

gi FXj D

8̂<̂
:
qi iXi if i D j;fqijXj if i < j;

Xj if i > j:

Then
V 2

kZ�m
kZ�m

YDˆa
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Arithmetic root systems m

1. Rank 2: cases 1–4, 10; rank 3: cases 1–8, 10; m D ‡.jqj/ if 2 j jqj;

rank 4: cases 1–14, rank � 5: cases 1–4, 7–10, 22 m D 2‡.jqj/ if 2 − jqj
2. Rank 2: case 5 m D ‡.jqj/ if 3 j jqj;

m D 3‡.jqj/ if 3 − jqj
3. Rank 2: cases 7–9 m D 6

4. Rank 2: case 11 m D 4

5. Rank 2: case 12 m D 12

6. Rank 2: case 14 m D 10

7. Rank 3: case 18 m D 3

8. Rank 4: case 22; rank 5: cases 14, 19 m D 2

Table 1. The number m associated to each arithmetic root system.

where a is determined by equations (6.2). According to Proposition 6.3, ˆa is nontrivial and
M D B.V /#kZ�m is a genuine pointed Majid algebra such that the arithmetic root system of
B.V / is

a
�;E .

Remark 6.5. The preceding construction provides many new examples of finite-dimen-
sional pointed Majid algebras. It is obvious that M D B.V /#kZ�m is finite-dimensional if
and only if B.V / is finite-dimensional, which is completely determined by its arithmetic root
system (D

a
�;E ). When

a
�;E is of rank 2, or of Cartan type, the associated pointed Majid

algebraM D B.V /#kZ�m is finite-dimensional. For other cases, it is an open question whether
the corresponding Nichols algebras is finite-dimensional or not.

6.2. Finite-dimensional pointed Majid algebras of Cartan type. In this subsection,
we will give more examples of genuine finite-dimensional pointed Majid algebras. Let

a
�;E

be an arithmetic root system. If
a

is a root system of a complex semisimple Lie algebra, then
we call

a
�;E an arithmetic root system of Cartan type.

Definition 6.6. LetM be a finite-dimensional connected graded pointed Majid algebra.
By Theorem 5.7, there exists a root datum D DD.D�;E ;S;X/ such thatM DM.D/. If the
arithmetic root system of D is of Cartan type, then we say that M is a pointed Majid algebra
of Cartan type.

According to [20], if B.V / is a usual Nichols algebra of diagonal type with finite root
system, and the rank of B.V / is � , then there exist a bicharacter � on Z� and a basis E such
that

a
.B.V //�;E is an arithmetical root system. In fact, arithmetic root systems include more

information than root systems of Nichols algebras. For instance, all the rank-1Nichols algebras
have the same root system, i.e., ¹˛;�˛º, but there are both finite-dimensional and infinite-
dimensional rank-1 Nichols algebras, hence they have different arithmetic root systems.
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Suppose C D .cij /1�i;j�� is a finite Cartan matrix. We say 1 � i ¤ j � � are con-
nected if there exist k1; k2; : : : ; kn such that ci;k1 ; ck1k2 ; : : : ; ckn�1kn ; ckn;j are nonzero num-
bers. In this subsection, we will prove the following conclusion.

Proposition 6.7. Suppose that
a

is a finite root system of Cartan type. Then there exist
an abelian group G and a root datum D DD.D�;E ;S;X/ over G, such that M.D/ is a
finite-dimensional genuine pointed Majid algebra and the root system of D is

a
.

Proof. Let C D .cij /1�i;j�� be the finite Cartan matrix corresponding to
a

, and let
D D ı.d1; : : : ; d� / be the diagonal matrix such that DC is symmetric. Let J be the set of
connected components of ¹1; : : : ; �º. Fix an order < on J . For each I 2 J , define a positive
odd integermI > 2 satisfying the following:

(T1) If I; I 0 2 J and I < I 0, thenmI jmI 0 .

(T2) If I is of type G3, we assume that 3 −mI .

Let qI D �m2I be a primitivem2I -th root of unity, and qi i D q
di
I , i 2 I , I 2 J . Define

qij D q
�dicij
i i ; qj i D 1

for all 1 � i < j � � . Let E D ¹e1; : : : ; e�º be the canonical basis of Z� and � a bicharacter
on Z� given by

�.ei ; ej / D qij ; 1 � i; j � �:

Then it is obvious that4�;E is an arithmetic root system. Set

G D Zm1 � � � � � Zm� D hg1i � � � � � hg� i;

wheremi DmI , i 2 I . Next we will show that there exists a root datum D DD.D�;E ;S;X/

overG.
Let S D .sij /1�i;j�� be the identity matrix, i.e., sij D ıij , 1 � i; j � � . Then the in-

verse matrix T D .tij / is also the identity matrix. For all 1 � i; j � � , define XD .xij /1�i;j��
through

xij D

8̂<̂
:
di if i D j;

�dicij if i < j;

0 if i > j:

Then we have
mX
jD1

xij tkj D xik � 0 .modmi /; 1 � k < i � n;

which implies (4.5).
According to the definition of xij , it is obvious that

nY
kD1

�sikxkimk
D �xiimi D qi i ;
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where mi Dm2i for 1 � i � � . When i < j , we have

nY
kD1

�
sikxkjCsjkxki
mk D q

�xij
ij D qij qj i D fqij :

This implies that DDD.D�;E ;S;X/ is a root datum overG. Since ai � xi i D di .modmi /,
we have ai ¤ 0 for each i . Hence a is nontrivial, which implies thatM.D/ is genuine.

Finally, we prove thatM.D/ is finite-dimensional. We need to show that for any ˛ 2
aC,

the nilpotent indexN˛ is finite. Let
a
I be the root system corresponding to I 2 J . It is obvious

that
a
D
S
I2J

a
I . LetG be the bigger group defined byG and �; �; see the sentences before

Lemma 4.6. We know that there exists a 2-cocycle J on G such that

U D AV.D/J�1 2 kG
kGYD

and B.U / and B.D/ have the same root system. Because the nilpotent index of a root vector
is invariant under twisted deformation by J , we only need to prove that the nilpotent index of
the arithmetic root vector of B.U / is finite. According to [4, Theorem 5.1] and (T2), for all
˛ 2

aC
I , I 2 J , we have N˛ D NI D jqi i j, i 2 I , hence the nilpotent index must be finite.
This completes the proof of the proposition.

Remark 6.8. From the proof of Proposition 6.7, we see that there are many choices
of G, hence many pointed Majid algebra associated to each arithmetic root system of Cartan
type. This also provides a large class of examples of new genuine finite-dimensional pointed
Majid algebras.

Acknowledgement. We would like thank the referee for his/her very valuable com-
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